diff --git a/dune/istl/ilu.hh b/dune/istl/ilu.hh index f7557d29f329a88031c7b7b50d161c37f13f6955..edf2380744031fc071477fc9984c97ef8652f7d6 100644 --- a/dune/istl/ilu.hh +++ b/dune/istl/ilu.hh @@ -188,7 +188,9 @@ namespace Dune { coliterator kj = ILU[(*ik).first].find((*ik).first); // diagonal in k for (++kj; kj!=endk; ++kj) // row k eliminates in row i { - int generation = (int) firstmatrixelement(*kj); + // we misuse the storage to store an int. If the field_type is std::complex, we have to access the real part + // starting from C++11, we can use std::real to always return a real value, even if it is double/float + int generation = (int) std::real( firstmatrixelement(*kj) ); if (generation<n) { mapiterator ij = rowpattern.find(kj.index()); diff --git a/dune/istl/paamg/aggregates.hh b/dune/istl/paamg/aggregates.hh index 43696b507a55006f75247a0217ab487371f84daf..77449dc81c5982e12ed04756407a94ee35ec5640 100644 --- a/dune/istl/paamg/aggregates.hh +++ b/dune/istl/paamg/aggregates.hh @@ -19,6 +19,7 @@ #include <utility> #include <set> #include <algorithm> +#include <complex> #include <limits> #include <ostream> @@ -172,15 +173,17 @@ namespace Dune /** @brief The matrix we work on. */ const Matrix* matrix_; /** @brief The current max value.*/ - typename Matrix::field_type maxValue_; + typedef typename Matrix::field_type field_type; + typedef typename FieldTraits<field_type>::real_type real_type; + real_type maxValue_; /** @brief The functor for calculating the norm. */ Norm norm_; /** @brief index of the currently evaluated row. */ int row_; /** @brief The norm of the current diagonal. */ - typename Matrix::field_type diagonal_; - std::vector<typename Matrix::field_type> vals_; - typename std::vector<typename Matrix::field_type>::iterator valIter_; + real_type diagonal_; + std::vector<real_type> vals_; + typename std::vector<real_type>::iterator valIter_; }; @@ -198,7 +201,7 @@ namespace Dune assert(vals_.size()==row.size()); valIter_=vals_.begin(); - maxValue_ = std::min(- std::numeric_limits<typename Matrix::field_type>::max(), std::numeric_limits<typename Matrix::field_type>::min()); + maxValue_ = std::min(- std::numeric_limits<real_type>::max(), std::numeric_limits<real_type>::min()); diagonal_=norm_(row[index]); row_ = index; } @@ -207,7 +210,7 @@ namespace Dune inline void SymmetricMatrixDependency<M,N>::examine(const ColIter& col) { // skip positive offdiagonals if norm preserves sign of them. - typename Matrix::field_type eij = norm_(*col); + real_type eij = norm_(*col); if(!N::is_sign_preserving || eij<0) // || eji<0) { *valIter_ = eij/diagonal_*eij/norm_(matrix_->operator[](col.index())[col.index()]); @@ -287,13 +290,15 @@ namespace Dune /** @brief The matrix we work on. */ const Matrix* matrix_; /** @brief The current max value.*/ - typename Matrix::field_type maxValue_; + typedef typename Matrix::field_type field_type; + typedef typename FieldTraits<field_type>::real_type real_type; + real_type maxValue_; /** @brief The functor for calculating the norm. */ Norm norm_; /** @brief index of the currently evaluated row. */ int row_; /** @brief The norm of the current diagonal. */ - typename Matrix::field_type diagonal_; + real_type diagonal_; }; /** @@ -346,13 +351,15 @@ namespace Dune /** @brief The matrix we work on. */ const Matrix* matrix_; /** @brief The current max value.*/ - typename Matrix::field_type maxValue_; + typedef typename Matrix::field_type field_type; + typedef typename FieldTraits<field_type>::real_type real_type; + real_type maxValue_; /** @brief The functor for calculating the norm. */ Norm norm_; /** @brief index of the currently evaluated row. */ int row_; /** @brief The norm of the current diagonal. */ - typename Matrix::field_type diagonal_; + real_type diagonal_; }; /** @@ -372,10 +379,48 @@ namespace Dune * @param m The matrix ro compute the norm of. */ template<class M> - typename M::field_type operator()(const M& m) const + typename FieldTraits<typename M::field_type>::real_type operator()(const M& m) const { + typedef typename M::field_type field_type; + typedef typename FieldTraits<field_type>::real_type real_type; + static_assert( std::is_convertible<field_type, real_type >::value, + "use of diagonal norm in AMG not implemented for complex field_type"); return m[N][N]; + // possible implementation for complex types: return signed_abs(m[N][N]); + } + + private: + + //! return sign * abs_value; for real numbers this is just v + template<typename T> + static T signed_abs(const T & v) + { + return v; + } + + //! return sign * abs_value; for complex numbers this is csgn(v) * abs(v) + template<typename T> + static T signed_abs(const std::complex<T> & v) + { + // return sign * abs_value + // in case of complex numbers this extends to using the csgn function to determine the sign + return csgn(v) * std::abs(v); } + + //! sign function for complex numbers; for real numbers we assume imag(v) = 0 + template<typename T> + static T csgn(const T & v) + { + return (T(0) < v) - (v < T(0)); + } + + //! sign function for complex numbers + template<typename T> + static T csgn(std::complex<T> a) + { + return csgn(a.real())+(a.real() == 0.0)*csgn(a.imag()); + } + }; /** @@ -401,7 +446,7 @@ namespace Dune * @param m The matrix row to compute the norm of. */ template<class M> - typename M::field_type operator()(const M& m) const + typename FieldTraits<typename M::field_type>::real_type operator()(const M& m) const { return m.infinity_norm(); } @@ -418,7 +463,7 @@ namespace Dune * @param m The matrix row to compute the norm of. */ template<class M> - typename M::field_type operator()(const M& m) const + typename FieldTraits<typename M::field_type>::real_type operator()(const M& m) const { return m.frobenius_norm(); } @@ -434,7 +479,7 @@ namespace Dune * @param m The matrix row to compute the norm of. */ template<class M> - typename M::field_type operator()(const M& m) const + typename FieldTraits<typename M::field_type>::real_type operator()(const M& m) const { return 1; } @@ -1362,8 +1407,8 @@ namespace Dune template<class M, class N> inline void SymmetricDependency<M,N>::examine(const ColIter& col) { - typename Matrix::field_type eij = norm_(*col); - typename Matrix::field_type eji = norm_(matrix_->operator[](col.index())[row_]); + real_type eij = norm_(*col); + real_type eji = norm_(matrix_->operator[](col.index())[row_]); // skip positive offdiagonals if norm preserves sign of them. if(!N::is_sign_preserving || eij<0 || eji<0) @@ -1376,8 +1421,8 @@ namespace Dune template<class G> inline void SymmetricDependency<M,N>::examine(G& graph, const typename G::EdgeIterator& edge, const ColIter& col) { - typename Matrix::field_type eij = norm_(*col); - typename Matrix::field_type eji = norm_(matrix_->operator[](col.index())[row_]); + real_type eij = norm_(*col); + real_type eji = norm_(matrix_->operator[](col.index())[row_]); // skip positve offdiagonals if norm preserves sign of them. if(!N::is_sign_preserving || (eij<0 || eji<0)) @@ -1409,7 +1454,7 @@ namespace Dune inline void Dependency<M,N>::initRow(const Row& row, int index) { DUNE_UNUSED_PARAMETER(row); - maxValue_ = std::min(- std::numeric_limits<typename Matrix::field_type>::max(), std::numeric_limits<typename Matrix::field_type>::min()); + maxValue_ = std::min(- std::numeric_limits<real_type>::max(), std::numeric_limits<real_type>::min()); row_ = index; diagonal_ = norm_(matrix_->operator[](row_)[row_]); } @@ -1758,7 +1803,7 @@ namespace Dune // the calculator should know whether the vertex is isolated. typedef typename Matrix::ConstColIterator ColIterator; ColIterator end = row.end(); - typename Matrix::field_type absoffdiag=0; + typename FieldTraits<typename Matrix::field_type>::real_type absoffdiag=0.; if(firstlevel) { for(ColIterator col = row.begin(); col != end; ++col) diff --git a/dune/istl/paamg/test/amgtest.cc b/dune/istl/paamg/test/amgtest.cc index efc0817210f56f11c12e4bc0109371cc5d912306..9d09fc45bb1fc370278e529b23841844ec637c49 100644 --- a/dune/istl/paamg/test/amgtest.cc +++ b/dune/istl/paamg/test/amgtest.cc @@ -24,8 +24,10 @@ #include <dune/istl/solvers.hh> #include <cstdlib> #include <ctime> +#include <complex> typedef double XREAL; +// typedef std::complex<double> XREAL; /* typedef HPA::xreal XREAL; @@ -99,8 +101,10 @@ void testAMG(int N, int coarsenTarget, int ml) watch.reset(); Operator fop(mat); - typedef Dune::Amg::CoarsenCriterion<Dune::Amg::UnSymmetricCriterion<BCRSMat,Dune::Amg::FirstDiagonal> > - Criterion; + typedef typename std::conditional< std::is_convertible<XREAL, typename Dune::FieldTraits<XREAL>::real_type>::value, + Dune::Amg::FirstDiagonal, Dune::Amg::RowSum >::type Norm; + typedef Dune::Amg::CoarsenCriterion<Dune::Amg::UnSymmetricCriterion<BCRSMat,Norm> > + Criterion; typedef Dune::SeqSSOR<BCRSMat,Vector,Vector> Smoother; //typedef Dune::SeqSOR<BCRSMat,Vector,Vector> Smoother; //typedef Dune::SeqJac<BCRSMat,Vector,Vector> Smoother;