-
Marco Agnese authoredMarco Agnese authored
ldl.hh 9.67 KiB
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_ISTL_LDL_HH
#define DUNE_ISTL_LDL_HH
#if HAVE_SUITESPARSE_LDL || defined DOXYGEN
#include <iostream>
#include <type_traits>
#ifdef __cplusplus
extern "C"
{
#include "ldl.h"
#include "amd.h"
}
#endif
#include <dune/common/exceptions.hh>
#include <dune/common/unused.hh>
#include <dune/istl/colcompmatrix.hh>
#include <dune/istl/solvers.hh>
#include <dune/istl/solvertype.hh>
namespace Dune {
/**
* @addtogroup ISTL
*
* @{
*/
/**
* @file
* @author Marco Agnese, Andrea Sacconi
* @brief Class for using LDL with ISTL matrices.
*/
// forward declarations
template<class M, class T, class TM, class TD, class TA>
class SeqOverlappingSchwarz;
template<class T, bool tag>
struct SeqOverlappingSchwarzAssemblerHelper;
/**
* @brief Use the %LDL package to directly solve linear systems -- empty default class
* @tparam Matrix the matrix type defining the system
* Details on UMFPack can be found on
* http://www.cise.ufl.edu/research/sparse/ldl/
*/
template<class Matrix>
class LDL
{};
/**
* @brief The %LDL direct sparse solver for matrices of type BCRSMatrix
*
* Specialization for the Dune::BCRSMatrix. %LDL will always go double
* precision.
*
* \tparam T Number type. Only double is supported
* \tparam A STL-compatible allocator type
* \tparam n Number of rows in a matrix block
* \tparam m Number of columns in a matrix block
*
* \note This will only work if dune-istl has been configured to use LDL
*/
template<typename T, typename A, int n, int m>
class LDL<BCRSMatrix<FieldMatrix<T,n,m>,A > >
: public InverseOperator<BlockVector<FieldVector<T,m>, typename A::template rebind<FieldVector<T,m> >::other>,
BlockVector<FieldVector<T,n>, typename A::template rebind<FieldVector<T,n> >::other> >
{
public:
/** @brief The matrix type. */
typedef Dune::BCRSMatrix<FieldMatrix<T,n,m>,A> Matrix;
typedef Dune::BCRSMatrix<FieldMatrix<T,n,m>,A> matrix_type;
/** @brief The corresponding SuperLU Matrix type. */
typedef Dune::ColCompMatrix<Matrix> LDLMatrix;
/** @brief Type of an associated initializer class. */
typedef ColCompMatrixInitializer<BCRSMatrix<FieldMatrix<T,n,m>,A> > MatrixInitializer;
/** @brief The type of the domain of the solver. */
typedef Dune::BlockVector<FieldVector<T,m>, typename A::template rebind<FieldVector<T,m> >::other> domain_type;
/** @brief The type of the range of the solver. */
typedef Dune::BlockVector<FieldVector<T,n>, typename A::template rebind<FieldVector<T,n> >::other> range_type;
/**
* @brief Construct a solver object from a BCRSMatrix.
*
* This computes the matrix decomposition, and may take a long time
* (and use a lot of memory).
*
* @param matrix the matrix to solve for
* @param verbose 0 or 1 set the verbosity level, defaults to 0
*/
LDL(const Matrix& matrix, int verbose=0) : matrixIsLoaded_(false), verbose_(verbose)
{
//check whether T is a supported type
static_assert(std::is_same<T,double>::value,"Unsupported Type in LDL (only double supported)");
setMatrix(matrix);
}
/**
* @brief Constructor for compatibility with SuperLU standard constructor
*
* This computes the matrix decomposition, and may take a long time
* (and use a lot of memory).
*
* @param matrix the matrix to solve for
* @param verbose 0 or 1 set the verbosity level, defaults to 0
*/
LDL(const Matrix& matrix, int verbose, bool) : matrixIsLoaded_(false), verbose_(verbose)
{
//check whether T is a supported type
static_assert(std::is_same<T,double>::value,"Unsupported Type in LDL (only double supported)");
setMatrix(matrix);
}
/** @brief Default constructor. */
LDL() : matrixIsLoaded_(false), verbose_(0)
{}
/** @brief Default constructor. */
virtual ~LDL()
{
if ((ldlMatrix_.N() + ldlMatrix_.M() > 0) || matrixIsLoaded_)
free();
}
/** \copydoc InverseOperator::apply(X&, Y&, InverseOperatorResult&) */
virtual void apply(domain_type& x, range_type& b, InverseOperatorResult& res)
{
const int dimMat(ldlMatrix_.N());
ldl_perm(dimMat, Y_, reinterpret_cast<double*>(&b[0]), P_);
ldl_lsolve(dimMat, Y_, Lp_, Li_, Lx_);
ldl_dsolve(dimMat, Y_, D_);
ldl_ltsolve(dimMat, Y_, Lp_, Li_, Lx_);
ldl_permt(dimMat, reinterpret_cast<double*>(&x[0]), Y_, P_);
// this is a direct solver
res.iterations = 1;
res.converged = true;
}
/** \copydoc InverseOperator::apply(X&,Y&,double,InverseOperatorResult&) */
virtual void apply(domain_type& x, range_type& b, double reduction, InverseOperatorResult& res)
{
DUNE_UNUSED_PARAMETER(reduction);
apply(x,b,res);
}
/**
* @brief Additional apply method with c-arrays in analogy to superlu.
* @param x solution array
* @param b rhs array
*/
void apply(T* x, T* b)
{
const int dimMat(ldlMatrix_.N());
ldl_perm(dimMat, Y_, b, P_);
ldl_lsolve(dimMat, Y_, Lp_, Li_, Lx_);
ldl_dsolve(dimMat, Y_, D_);
ldl_ltsolve(dimMat, Y_, Lp_, Li_, Lx_);
ldl_permt(dimMat, x, Y_, P_);
}
void setOption(unsigned int option, double value)
{
DUNE_UNUSED_PARAMETER(option);
DUNE_UNUSED_PARAMETER(value);
}
/** @brief Initialize data from given matrix. */
void setMatrix(const Matrix& matrix)
{
if ((ldlMatrix_.N() + ldlMatrix_.M() > 0) || matrixIsLoaded_)
free();
ldlMatrix_ = matrix;
decompose();
}
template<class S>
void setSubMatrix(const Matrix& matrix, const S& rowIndexSet)
{
if ((ldlMatrix_.N() + ldlMatrix_.M() > 0) || matrixIsLoaded_)
free();
ldlMatrix_.setMatrix(matrix,rowIndexSet);
decompose();
}
/**
* @brief Sets the verbosity level for the solver.
* @param v verbosity level: 0 only error messages, 1 a bit of statistics.
*/
inline void setVerbosity(int v)
{
verbose_=v;
}
/**
* @brief Return the column compress matrix.
* @warning It is up to the user to keep consistency.
*/
inline LDLMatrix& getInternalMatrix()
{
return ldlMatrix_;
}
/**
* @brief Free allocated space.
* @warning Later calling apply will result in an error.
*/
void free()
{
delete [] D_;
delete [] Y_;
delete [] Lp_;
delete [] Lx_;
delete [] Li_;
delete [] P_;
delete [] Pinv_;
ldlMatrix_.free();
matrixIsLoaded_ = false;
}
/** @brief Get method name. */
inline const char* name()
{
return "LDL";
}
/**
* @brief Get factorization diagonal matrix D.
* @warning It is up to the user to preserve consistency.
*/
inline double* getD()
{
return D_;
}
/**
* @brief Get factorization Lp.
* @warning It is up to the user to preserve consistency.
*/
inline int* getLp()
{
return Lp_;
}
/**
* @brief Get factorization Li.
* @warning It is up to the user to preserve consistency.
*/
inline int* getLi()
{
return Li_;
}
/**
* @brief Get factorization Lx.
* @warning It is up to the user to preserve consistency.
*/
inline double* getLx()
{
return Lx_;
}
private:
template<class M,class X, class TM, class TD, class T1>
friend class SeqOverlappingSchwarz;
friend struct SeqOverlappingSchwarzAssemblerHelper<LDL<Matrix>,true>;
/** @brief Computes the LDL decomposition. */
void decompose()
{
// allocate vectors
const int dimMat(ldlMatrix_.N());
D_ = new double [dimMat];
Y_ = new double [dimMat];
Lp_ = new int [dimMat + 1];
Parent_ = new int [dimMat];
Lnz_ = new int [dimMat];
Flag_ = new int [dimMat];
Pattern_ = new int [dimMat];
P_ = new int [dimMat];
Pinv_ = new int [dimMat];
double Info [AMD_INFO];
if(amd_order (dimMat, ldlMatrix_.getColStart(), ldlMatrix_.getRowIndex(), P_, (double *) NULL, Info) < AMD_OK)
DUNE_THROW(InvalidStateException,"Error: AMD failed!");
if(verbose_ > 0)
amd_info (Info);
// compute the symbolic factorisation
ldl_symbolic(dimMat, ldlMatrix_.getColStart(), ldlMatrix_.getRowIndex(), Lp_, Parent_, Lnz_, Flag_, P_, Pinv_);
// initialise those entries of additionalVectors_ whose dimension is known only now
Lx_ = new double [Lp_[dimMat]];
Li_ = new int [Lp_[dimMat]];
// compute the numeric factorisation
const int rank(ldl_numeric(dimMat, ldlMatrix_.getColStart(), ldlMatrix_.getRowIndex(), ldlMatrix_.getValues(),
Lp_, Parent_, Lnz_, Li_, Lx_, D_, Y_, Pattern_, Flag_, P_, Pinv_));
// free temporary vectors
delete [] Flag_;
delete [] Pattern_;
delete [] Parent_;
delete [] Lnz_;
if(rank!=dimMat)
DUNE_THROW(InvalidStateException,"Error: LDL factorisation failed!");
}
LDLMatrix ldlMatrix_;
bool matrixIsLoaded_;
int verbose_;
int* Lp_;
int* Parent_;
int* Lnz_;
int* Flag_;
int* Pattern_;
int* P_;
int* Pinv_;
double* D_;
double* Y_;
double* Lx_;
int* Li_;
};
template<typename T, typename A, int n, int m>
struct IsDirectSolver<LDL<BCRSMatrix<FieldMatrix<T,n,m>,A> > >
{
enum {value = true};
};
template<typename T, typename A, int n, int m>
struct StoresColumnCompressed<LDL<BCRSMatrix<FieldMatrix<T,n,m>,A> > >
{
enum {value = true};
};
}
#endif //HAVE_SUITESPARSE_LDL
#endif //DUNE_ISTL_LDL_HH