Skip to content
Snippets Groups Projects
Commit afe6ec46 authored by Peter Bastian's avatar Peter Bastian
Browse files

only very brief description of implemented methods

[[Imported from SVN: r49]]
parent 2f54e22f
No related branches found
No related tags found
No related merge requests found
......@@ -427,8 +427,67 @@ structure can be generated simply with the copy constructor.
\subsection{Input/output}
\subsection{Block recursion}
\subsection{Triangular solves}
\begin{figure}
\begin{center}
\begin{tabular}{|l|l|}
\hline
\textbf{function} & \textbf{computation}\\
\hline
\hline
\texttt{bltsolve(A,v,d)} & $v=(L+D)^{-1}d$\\
\texttt{bltsolve(A,v,d,$\omega$)} & $v=\omega(L+D)^{-1}d$\\
\texttt{ubltsolve(A,v,d)} & $v=L^{-1}d$\\
\texttt{ubltsolve(A,v,d,$\omega$)} & $v=\omega L^{-1}d$\\
\hline
\texttt{butsolve(A,v,d)} & $v=(D+U)^{-1}d$\\
\texttt{butsolve(A,v,d,$\omega$)} & $v=\omega(D+U)^{-1}d$\\
\texttt{ubutsolve(A,v,d)} & $v=U^{-1}d$\\
\texttt{ubutsolve(A,v,d,$\omega$)} & $v=\omega U^{-1}d$\\
\hline
\texttt{bdsolve(A,v,d)} & $v=D^{-1}d$\\
\texttt{bdsolve(A,v,d,$\omega$)} & $v=\omega D^{-1}d$\\
\hline
\end{tabular}
\end{center}
\caption{Functions available for block triangular and block diagonal
solves. The matrix $A$ is decomposed into $A=L+D+U$ where $L$ is
strictly lower block triangular, $D$ is block diagonal and $U$ is
strictly upper block triangular. Standard is one level of block
recursion, arbitrary level can be given by additional parameter.}
\label{Fig:TriangularSolves}
\end{figure}
\subsection{Simple iterative solvers}
\begin{figure}
\begin{center}
\begin{tabular}{|l|l|}
\hline
\textbf{function} & \textbf{computation}\\
\hline
\hline
\texttt{dbjac(A,x,b,$\omega$)} & $x=x+\omega D^{-1}(b-Ax)$ \\
\texttt{bgs(A,x,b)} & $x = x + (L+D)^{-1}(b-Ax)$\\
\texttt{bsor(A,x,b,$\omega$)} & $x = x + \omega(L+D)^{-1}(b-Ax)$\\
\texttt{bssor(A,x,b,$\omega$)} & $x' = x + \omega(L+D)^{-1}(b-Ax)$; $x
= x' + \omega(U+D)^{-1}(b-Ax')$ \\
\hline
\end{tabular}
\end{center}
\caption{Kernels for iterative solvers.
The matrix $A$ is decomposed into $A=L+D+U$ where $L$ is
strictly lower block triangular, $D$ is block diagonal and $U$ is
strictly upper block triangular. Standard is one level of block
recursion, arbitrary level can be given by additional parameter.}
\label{Fig:IterativeSolvers}
\end{figure}
\subsection{Sparse LU decomposition}
\section{Performance}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment