Skip to content
Snippets Groups Projects
Commit 0fcd2e45 authored by Robert K's avatar Robert K
Browse files

authors.

parent b8b27f82
No related branches found
No related tags found
No related merge requests found
......@@ -90,6 +90,7 @@
\newcommand{\Kminus}{{K^-_e}}
\newcommand{\dune}{\textsc{Dune}\xspace}
\newcommand{\dunefem}{\textsc{Dune-Fem}\xspace}
\newcommand{\dunefemdg}{\textsc{Dune-Fem-DG}\xspace}
\newcommand{\alugrid}{\code{ALUGrid}\xspace}
\newcommand{\spgrid}{\code{SPGrid}\xspace}
\newcommand{\likwid}{\code{likwid}\xspace}
......
......@@ -12,6 +12,41 @@
\todo{Define U}
\subsection{Compressible Navier-Stokes}
The vector of conservative variables is $\vecU=(\rho, \rho\vecv, \rho\theta)^\trans$.
$\rho$ is the density, $\theta$ the potential temperature, and
$\vecv=(v_1,...,v_d)^T$ the velocity field.
$\mathcal{F}(\vecU) = (\mathcal{F}_i(\vecU))$ and
$\mathcal{A}(\vecU)\nabla\vecU = ((\mathcal{A}(\vecU)\nabla \vecU)_i )$ for $i=1,...,d$, are
given as follows:
\begin{equation}
\mathcal{F}_i(\vecU)=\left(\begin{array}{c}
\rho v_i \\
\rho v_1 v_i + \delta_{1i}p \\
\vdots \\
\rho v_d v_i + \delta_{di} p \\
v_i \rho\theta \\
\end{array}\right),\qquad
\big (\mathcal{A}(\vecU)\nabla\vecU \big )_i =\mu\rho\left(\begin{array}{c}
0 \\
\partial_i v_1 \\
\vdots \\
\partial_i v_d \\
\partial_i\theta \\
\end{array}\right).
\end{equation}
with $\mu$ being the kinematic viscosity.
The source term $\mathcal{S}$ is only acting on the last component of the velocity field, i.e.
$\mathcal{S}(\vecU) = (0,...,0,-\rho g,0)^T$ with
$g$ being the constant of the gravitation force.
To close the system we define the pressure $p$ in accordance with the
ideal gas law $p = p_0\left(\frac{\rho\gasconst\theta}{p_0}\right)^\gamma$,
where $\gamma=c_p/c_v$ is the heat capacity ratio and $c_p$ and $c_v$ are specific
heat capacities under constant pressure and volume, respectively.
The individual gas constant is defined as $\gasconst=c_p-c_v$.
%In equation (\ref{eqn:eos})
%$p_0$ is the standard reference pressure,
For the standard reference pressure $p_0$ we choose $p_0=10^5$~Pa.
\todo{Define U}
\subsection{Poisson equation}
......
\documentclass{ansarticle}
\title{Preparing articles for submission to the \\
Archive of Numerical Software}
\author[1]{Editor O. Archive\thanks{Additional thanks to my neighbor's dog
for waking me up on time to work on this style file}}
\author[2]{Author O. Software}
\affil[1]{The Archive of Numerical Software}
\affil[2]{The Worlds Best Place for Numerical Software}
\runningtitle{Preparing articles for ANS}
\runningauthor{Archive Editors}
\title{The \dunefemdg module}
\author[1]{Andreas Dedner}
\author[2]{Stefan Girke}
\author[3]{Robert Kl{\"o}fkorn}
\author[4]{Tobias Malkmus}
\affil[1]{University of Warwick, UK}
\affil[2]{University of iM\"unster, Germany}
\affil[3]{International Research Institute of Stavanger, Norway}
\affil[4]{University of Freiburg, Germany}
\runningtitle{The \dunefemdg module}
\runningauthor{Dedner, Girke, Kl{\"o}fkorn, Malkmus}
\input{macros}
......@@ -37,10 +39,8 @@ floating point performance of the code.
%------------------------------------------------------------------------------
\section{Governing Equations}
\label{sec:equations}
The system we investigate is governed by the
viscous compressible flow equations in $\theta$-form,
for example, described in \cite{GR08}.
For $\Omega \subset \RRR^d$, $d=1,2,3$, these equations can be written in the form
In this paper we consider a general class of advection-diffusion problems
described by the following partial differential equation in $\Omega \subset \RRR^d$, $d=1,2,3$
\begin{eqnarray}
\label{eqn:general}
\label{eqn:ns}
......@@ -51,42 +51,6 @@ with $$\oper{L}(\vecU) := - \nabla \cdot\big( \mathcal{F}(\vecU) -
\mathcal{A}(\vecU,\nabla\vecU) \big) + \mathcal{S}(\vecU)$$
and suitable boundary conditions.
\todo{Here U should not be specified yet.}
The vector of conservative variables is $\vecU=(\rho, \rho\vecv, \rho\theta)^\trans$.
$\rho$ is the density, $\theta$ the potential temperature, and
$\vecv=(v_1,...,v_d)^T$ the velocity field.
$\mathcal{F}(\vecU) = (\mathcal{F}_i(\vecU))$ and
$\mathcal{A}(\vecU)\nabla\vecU = ((\mathcal{A}(\vecU)\nabla \vecU)_i )$ for $i=1,...,d$, are
given as follows:
\begin{equation}
\mathcal{F}_i(\vecU)=\left(\begin{array}{c}
\rho v_i \\
\rho v_1 v_i + \delta_{1i}p \\
\vdots \\
\rho v_d v_i + \delta_{di} p \\
v_i \rho\theta \\
\end{array}\right),\qquad
\big (\mathcal{A}(\vecU)\nabla\vecU \big )_i =\mu\rho\left(\begin{array}{c}
0 \\
\partial_i v_1 \\
\vdots \\
\partial_i v_d \\
\partial_i\theta \\
\end{array}\right).
\end{equation}
with $\mu$ being the kinematic viscosity.
The source term $\mathcal{S}$ is only acting on the last component of the velocity field, i.e.
$\mathcal{S}(\vecU) = (0,...,0,-\rho g,0)^T$ with
$g$ being the constant of the gravitation force.
To close the system we define the pressure $p$ in accordance with the
ideal gas law $p = p_0\left(\frac{\rho\gasconst\theta}{p_0}\right)^\gamma$,
where $\gamma=c_p/c_v$ is the heat capacity ratio and $c_p$ and $c_v$ are specific
heat capacities under constant pressure and volume, respectively.
The individual gas constant is defined as $\gasconst=c_p-c_v$.
%In equation (\ref{eqn:eos})
%$p_0$ is the standard reference pressure,
For the standard reference pressure $p_0$ we choose $p_0=10^5$~Pa.
%------------------------------------------------------------------------------
%------------------------------------------------------------------------------
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment