Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
dune-fem-dg
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
dune-fem
dune-fem-dg
Commits
0fcd2e45
Commit
0fcd2e45
authored
9 years ago
by
Robert K
Browse files
Options
Downloads
Patches
Plain Diff
authors.
parent
b8b27f82
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
doc/paper/macros.tex
+1
-0
1 addition, 0 deletions
doc/paper/macros.tex
doc/paper/numerics.tex
+35
-0
35 additions, 0 deletions
doc/paper/numerics.tex
doc/paper/paper.tex
+13
-49
13 additions, 49 deletions
doc/paper/paper.tex
with
49 additions
and
49 deletions
doc/paper/macros.tex
+
1
−
0
View file @
0fcd2e45
...
...
@@ -90,6 +90,7 @@
\newcommand
{
\Kminus
}{{
K
^
-
_
e
}}
\newcommand
{
\dune
}{
\textsc
{
Dune
}
\xspace
}
\newcommand
{
\dunefem
}{
\textsc
{
Dune-Fem
}
\xspace
}
\newcommand
{
\dunefemdg
}{
\textsc
{
Dune-Fem-DG
}
\xspace
}
\newcommand
{
\alugrid
}{
\code
{
ALUGrid
}
\xspace
}
\newcommand
{
\spgrid
}{
\code
{
SPGrid
}
\xspace
}
\newcommand
{
\likwid
}{
\code
{
likwid
}
\xspace
}
...
...
This diff is collapsed.
Click to expand it.
doc/paper/numerics.tex
+
35
−
0
View file @
0fcd2e45
...
...
@@ -12,6 +12,41 @@
\todo
{
Define U
}
\subsection
{
Compressible Navier-Stokes
}
The vector of conservative variables is
$
\vecU
=(
\rho
,
\rho\vecv
,
\rho\theta
)
^
\trans
$
.
$
\rho
$
is the density,
$
\theta
$
the potential temperature, and
$
\vecv
=(
v
_
1
,...,v
_
d
)
^
T
$
the velocity field.
$
\mathcal
{
F
}
(
\vecU
)
=
(
\mathcal
{
F
}_
i
(
\vecU
))
$
and
$
\mathcal
{
A
}
(
\vecU
)
\nabla\vecU
=
((
\mathcal
{
A
}
(
\vecU
)
\nabla
\vecU
)
_
i
)
$
for
$
i
=
1
,...,d
$
, are
given as follows:
\begin{equation}
\mathcal
{
F
}_
i(
\vecU
)=
\left
(
\begin{array}
{
c
}
\rho
v
_
i
\\
\rho
v
_
1 v
_
i +
\delta
_{
1i
}
p
\\
\vdots
\\
\rho
v
_
d v
_
i +
\delta
_{
di
}
p
\\
v
_
i
\rho\theta
\\
\end{array}
\right
),
\qquad
\big
(
\mathcal
{
A
}
(
\vecU
)
\nabla\vecU
\big
)
_
i =
\mu\rho\left
(
\begin{array}
{
c
}
0
\\
\partial
_
i v
_
1
\\
\vdots
\\
\partial
_
i v
_
d
\\
\partial
_
i
\theta
\\
\end{array}
\right
).
\end{equation}
with
$
\mu
$
being the kinematic viscosity.
The source term
$
\mathcal
{
S
}$
is only acting on the last component of the velocity field, i.e.
$
\mathcal
{
S
}
(
\vecU
)
=
(
0
,...,
0
,
-
\rho
g,
0
)
^
T
$
with
$
g
$
being the constant of the gravitation force.
To close the system we define the pressure
$
p
$
in accordance with the
ideal gas law
$
p
=
p
_
0
\left
(
\frac
{
\rho\gasconst\theta
}{
p
_
0
}
\right
)
^
\gamma
$
,
where
$
\gamma
=
c
_
p
/
c
_
v
$
is the heat capacity ratio and
$
c
_
p
$
and
$
c
_
v
$
are specific
heat capacities under constant pressure and volume, respectively.
The individual gas constant is defined as
$
\gasconst
=
c
_
p
-
c
_
v
$
.
%In equation (\ref{eqn:eos})
%$p_0$ is the standard reference pressure,
For the standard reference pressure
$
p
_
0
$
we choose
$
p
_
0
=
10
^
5
$
~Pa.
\todo
{
Define U
}
\subsection
{
Poisson equation
}
...
...
This diff is collapsed.
Click to expand it.
doc/paper/paper.tex
+
13
−
49
View file @
0fcd2e45
\documentclass
{
ansarticle
}
\title
{
Preparing articles for submission to the
\\
Archive of Numerical Software
}
\author
[1]
{
Editor O. Archive
\thanks
{
Additional thanks to my neighbor's dog
for waking me up on time to work on this style file
}}
\author
[2]
{
Author O. Software
}
\affil
[1]
{
The Archive of Numerical Software
}
\affil
[2]
{
The Worlds Best Place for Numerical Software
}
\runningtitle
{
Preparing articles for ANS
}
\runningauthor
{
Archive Editors
}
\title
{
The
\dunefemdg
module
}
\author
[1]
{
Andreas Dedner
}
\author
[2]
{
Stefan Girke
}
\author
[3]
{
Robert Kl
{
\"
o
}
fkorn
}
\author
[4]
{
Tobias Malkmus
}
\affil
[1]
{
University of Warwick, UK
}
\affil
[2]
{
University of iM
\"
unster, Germany
}
\affil
[3]
{
International Research Institute of Stavanger, Norway
}
\affil
[4]
{
University of Freiburg, Germany
}
\runningtitle
{
The
\dunefemdg
module
}
\runningauthor
{
Dedner, Girke, Kl
{
\"
o
}
fkorn, Malkmus
}
\input
{
macros
}
...
...
@@ -37,10 +39,8 @@ floating point performance of the code.
%------------------------------------------------------------------------------
\section
{
Governing Equations
}
\label
{
sec:equations
}
The system we investigate is governed by the
viscous compressible flow equations in
$
\theta
$
-form,
for example, described in
\cite
{
GR08
}
.
For
$
\Omega
\subset
\RRR
^
d
$
,
$
d
=
1
,
2
,
3
$
, these equations can be written in the form
In this paper we consider a general class of advection-diffusion problems
described by the following partial differential equation in
$
\Omega
\subset
\RRR
^
d
$
,
$
d
=
1
,
2
,
3
$
\begin{eqnarray}
\label
{
eqn:general
}
\label
{
eqn:ns
}
...
...
@@ -51,42 +51,6 @@ with $$\oper{L}(\vecU) := - \nabla \cdot\big( \mathcal{F}(\vecU) -
\mathcal
{
A
}
(
\vecU
,
\nabla\vecU
)
\big
)
+
\mathcal
{
S
}
(
\vecU
)
$$
and suitable boundary conditions.
\todo
{
Here U should not be specified yet.
}
The vector of conservative variables is
$
\vecU
=(
\rho
,
\rho\vecv
,
\rho\theta
)
^
\trans
$
.
$
\rho
$
is the density,
$
\theta
$
the potential temperature, and
$
\vecv
=(
v
_
1
,...,v
_
d
)
^
T
$
the velocity field.
$
\mathcal
{
F
}
(
\vecU
)
=
(
\mathcal
{
F
}_
i
(
\vecU
))
$
and
$
\mathcal
{
A
}
(
\vecU
)
\nabla\vecU
=
((
\mathcal
{
A
}
(
\vecU
)
\nabla
\vecU
)
_
i
)
$
for
$
i
=
1
,...,d
$
, are
given as follows:
\begin{equation}
\mathcal
{
F
}_
i(
\vecU
)=
\left
(
\begin{array}
{
c
}
\rho
v
_
i
\\
\rho
v
_
1 v
_
i +
\delta
_{
1i
}
p
\\
\vdots
\\
\rho
v
_
d v
_
i +
\delta
_{
di
}
p
\\
v
_
i
\rho\theta
\\
\end{array}
\right
),
\qquad
\big
(
\mathcal
{
A
}
(
\vecU
)
\nabla\vecU
\big
)
_
i =
\mu\rho\left
(
\begin{array}
{
c
}
0
\\
\partial
_
i v
_
1
\\
\vdots
\\
\partial
_
i v
_
d
\\
\partial
_
i
\theta
\\
\end{array}
\right
).
\end{equation}
with
$
\mu
$
being the kinematic viscosity.
The source term
$
\mathcal
{
S
}$
is only acting on the last component of the velocity field, i.e.
$
\mathcal
{
S
}
(
\vecU
)
=
(
0
,...,
0
,
-
\rho
g,
0
)
^
T
$
with
$
g
$
being the constant of the gravitation force.
To close the system we define the pressure
$
p
$
in accordance with the
ideal gas law
$
p
=
p
_
0
\left
(
\frac
{
\rho\gasconst\theta
}{
p
_
0
}
\right
)
^
\gamma
$
,
where
$
\gamma
=
c
_
p
/
c
_
v
$
is the heat capacity ratio and
$
c
_
p
$
and
$
c
_
v
$
are specific
heat capacities under constant pressure and volume, respectively.
The individual gas constant is defined as
$
\gasconst
=
c
_
p
-
c
_
v
$
.
%In equation (\ref{eqn:eos})
%$p_0$ is the standard reference pressure,
For the standard reference pressure
$
p
_
0
$
we choose
$
p
_
0
=
10
^
5
$
~Pa.
%------------------------------------------------------------------------------
%------------------------------------------------------------------------------
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment