Newer
Older
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_TUPLE_UTILITY_HH
#define DUNE_TUPLE_UTILITY_HH
#include <cstddef>
#include <dune/common/typetraits.hh>
Christoph Gersbacher
committed
#include <dune/common/std/type_traits.hh>
#include "tuples.hh"
namespace Dune {
/** @ addtogroup Common
*
* @{
*/
/**
* @file
* @brief Contains utility classes which can be used with tuples.
*/
/**
* @brief A helper template that initializes a tuple consisting of pointers
* to NULL.
*
* A tuple of NULL pointers may be useful when you use a tuple of pointers
* in a class which you can only initialise in a later stage.
*/
class NullPointerInitialiser {
Christoph Gersbacher
committed
static_assert(Std::to_false_type<Tuple>::value, "Attempt to use the "
"unspecialized version of NullPointerInitialiser. "
"NullPointerInitialiser needs to be specialized for "
"each possible tuple size. Naturally the number of "
"pre-defined specializations is limited arbitrarily. "
"Maybe you need to raise this limit by defining some "
"more specializations? Also check that the tuple this "
"is applied to really is a tuple of pointers only.");
public:
//! export the type of the tuples
typedef Tuple ResultType;
//! generate a zero-initialized tuple
static ResultType apply();
};
#ifndef DOXYGEN
template<class Tuple>
struct NullPointerInitialiser<const Tuple>
: public NullPointerInitialiser<Tuple>
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
typedef const Tuple ResultType;
};
template<>
struct NullPointerInitialiser<tuple<> > {
typedef tuple<> ResultType;
static ResultType apply() {
return ResultType();
}
};
template<class T0>
struct NullPointerInitialiser<tuple<T0*> > {
typedef tuple<T0*> ResultType;
static ResultType apply() {
return ResultType(static_cast<T0*>(0));
}
};
template<class T0, class T1>
struct NullPointerInitialiser<tuple<T0*, T1*> > {
typedef tuple<T0*, T1*> ResultType;
static ResultType apply() {
return ResultType(static_cast<T0*>(0), static_cast<T1*>(0));
}
};
template<class T0, class T1, class T2>
struct NullPointerInitialiser<tuple<T0*, T1*, T2*> > {
typedef tuple<T0*, T1*, T2*> ResultType;
static ResultType apply() {
return ResultType(static_cast<T0*>(0), static_cast<T1*>(0),
static_cast<T2*>(0));
}
};
template<class T0, class T1, class T2, class T3>
struct NullPointerInitialiser<tuple<T0*, T1*, T2*, T3*> > {
typedef tuple<T0*, T1*, T2*, T3*> ResultType;
static ResultType apply() {
return ResultType(static_cast<T0*>(0), static_cast<T1*>(0),
static_cast<T2*>(0), static_cast<T3*>(0));
}
};
template<class T0, class T1, class T2, class T3, class T4>
struct NullPointerInitialiser<tuple<T0*, T1*, T2*, T3*, T4*> > {
typedef tuple<T0*, T1*, T2*, T3*, T4*> ResultType;
static ResultType apply() {
return ResultType(static_cast<T0*>(0), static_cast<T1*>(0),
static_cast<T2*>(0), static_cast<T3*>(0),
static_cast<T4*>(0));
}
};
template<class T0, class T1, class T2, class T3, class T4, class T5>
struct NullPointerInitialiser<tuple<T0*, T1*, T2*, T3*, T4*, T5*> > {
typedef tuple<T0*, T1*, T2*, T3*, T4*, T5*> ResultType;
static ResultType apply() {
return ResultType(static_cast<T0*>(0), static_cast<T1*>(0),
static_cast<T2*>(0), static_cast<T3*>(0),
static_cast<T4*>(0), static_cast<T5*>(0));
}
};
template<class T0, class T1, class T2, class T3, class T4, class T5,
class T6>
struct NullPointerInitialiser<tuple<T0*, T1*, T2*, T3*, T4*, T5*, T6*> > {
typedef tuple<T0*, T1*, T2*, T3*, T4*, T5*, T6*> ResultType;
static ResultType apply() {
return ResultType(static_cast<T0*>(0), static_cast<T1*>(0),
static_cast<T2*>(0), static_cast<T3*>(0),
static_cast<T4*>(0), static_cast<T5*>(0),
static_cast<T6*>(0));
}
};
template<class T0, class T1, class T2, class T3, class T4, class T5,
class T6, class T7>
struct NullPointerInitialiser<tuple<T0*, T1*, T2*, T3*, T4*, T5*, T6*,
T7*> > {
typedef tuple<T0*, T1*, T2*, T3*, T4*, T5*, T6*, T7*> ResultType;
static ResultType apply() {
return ResultType(static_cast<T0*>(0), static_cast<T1*>(0),
static_cast<T2*>(0), static_cast<T3*>(0),
static_cast<T4*>(0), static_cast<T5*>(0),
static_cast<T6*>(0), static_cast<T7*>(0));
}
};
template<class T0, class T1, class T2, class T3, class T4, class T5,
class T6, class T7, class T8>
struct NullPointerInitialiser<tuple<T0*, T1*, T2*, T3*, T4*, T5*, T6*,
T7*, T8*> > {
typedef tuple<T0*, T1*, T2*, T3*, T4*, T5*, T6*, T7*, T8*> ResultType;
static ResultType apply() {
return ResultType(static_cast<T0*>(0), static_cast<T1*>(0),
static_cast<T2*>(0), static_cast<T3*>(0),
static_cast<T4*>(0), static_cast<T5*>(0),
static_cast<T6*>(0), static_cast<T7*>(0),
static_cast<T8*>(0));
}
};
// template<class T0, class T1, class T2, class T3, class T4, class T5,
// class T6, class T7, class T8, class T9>
// struct NullPointerInitialiser<tuple<T0*, T1*, T2*, T3*, T4*, T5*, T6*,
// T7*, T8*, T9*> > {
// typedef tuple<T0*, T1*, T2*, T3*, T4*, T5*, T6*, T7*, T8*, T9*> ResultType;
// static ResultType apply() {
// return ResultType(static_cast<T0*>(0), static_cast<T1*>(0),
// static_cast<T2*>(0), static_cast<T3*>(0),
// static_cast<T4*>(0), static_cast<T5*>(0),
// static_cast<T6*>(0), static_cast<T7*>(0),
// static_cast<T8*>(0), static_cast<T9*>(0));
// }
// };
#endif // !defined(DOXYGEN)
/**
* @brief Helper template to clone the type definition of a tuple with the
* storage types replaced by a user-defined rule.
*
* Suppose all storage types A_i in a tuple define a type A_i::B. You can
* build up a pair consisting of the types defined by A_i::B in the following
* way:
* \code
* template <class A>
* struct MyEvaluator {
* typedef typename A::B Type;
* };
*
* typedef ForEachType<MyEvaluator, ATuple>::Type BTuple;
* \endcode
* Here, MyEvaluator is a helper struct that extracts the correct type from
* the storage types of the tuple defined by the tuple ATuple.
Jorrit Fahlke
committed
* \sa AddRefTypeEvaluator, AddPtrTypeEvaluator, genericTransformTuple(),
* and transformTuple().
*/
template <template <class> class TypeEvaluator, class TupleType>
class ForEachType {
Christoph Gersbacher
committed
static_assert(Std::to_false_type<TupleType>::value, "Attempt to use the "
"unspecialized version of ForEachType. ForEachType "
"needs to be specialized for each possible tuple "
"size. Naturally the number of pre-defined "
"specializations is limited arbitrarily. Maybe you "
"need to raise this limit by defining some more "
"specializations?");
struct ImplementationDefined {};
public:
//! type of the transformed tuple
typedef ImplementationDefined Type;
};
template <template <class> class TE, class Tuple>
struct ForEachType<TE, const Tuple> {
typedef const typename ForEachType<TE, Tuple>::Type Type;
};
template <template <class> class TE>
struct ForEachType<TE, tuple<> > {
typedef tuple<> Type;
};
template <template <class> class TE, class T0>
struct ForEachType<TE, tuple<T0> > {
typedef tuple<typename TE<T0>::Type> Type;
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
template <template <class> class TE, class T0, class T1>
struct ForEachType<TE, tuple<T0, T1> > {
typedef tuple<typename TE<T0>::Type, typename TE<T1>::Type> Type;
};
template <template <class> class TE, class T0, class T1, class T2>
struct ForEachType<TE, tuple<T0, T1, T2> > {
typedef tuple<typename TE<T0>::Type, typename TE<T1>::Type,
typename TE<T2>::Type> Type;
};
template <template <class> class TE, class T0, class T1, class T2, class T3>
struct ForEachType<TE, tuple<T0, T1, T2, T3> > {
typedef tuple<typename TE<T0>::Type, typename TE<T1>::Type,
typename TE<T2>::Type, typename TE<T3>::Type> Type;
};
template <template <class> class TE, class T0, class T1, class T2, class T3,
class T4>
struct ForEachType<TE, tuple<T0, T1, T2, T3, T4> > {
typedef tuple<typename TE<T0>::Type, typename TE<T1>::Type,
typename TE<T2>::Type, typename TE<T3>::Type,
typename TE<T4>::Type> Type;
};
template <template <class> class TE, class T0, class T1, class T2, class T3,
class T4, class T5>
struct ForEachType<TE, tuple<T0, T1, T2, T3, T4, T5> > {
typedef tuple<typename TE<T0>::Type, typename TE<T1>::Type,
typename TE<T2>::Type, typename TE<T3>::Type,
typename TE<T4>::Type, typename TE<T5>::Type> Type;
};
template <template <class> class TE, class T0, class T1, class T2, class T3,
class T4, class T5, class T6>
struct ForEachType<TE, tuple<T0, T1, T2, T3, T4, T5, T6> > {
typedef tuple<typename TE<T0>::Type, typename TE<T1>::Type,
typename TE<T2>::Type, typename TE<T3>::Type,
typename TE<T4>::Type, typename TE<T5>::Type,
typename TE<T6>::Type> Type;
};
template <template <class> class TE, class T0, class T1, class T2, class T3,
class T4, class T5, class T6, class T7>
struct ForEachType<TE, tuple<T0, T1, T2, T3, T4, T5, T6, T7> > {
typedef tuple<typename TE<T0>::Type, typename TE<T1>::Type,
typename TE<T2>::Type, typename TE<T3>::Type,
typename TE<T4>::Type, typename TE<T5>::Type,
typename TE<T6>::Type, typename TE<T7>::Type> Type;
};
template <template <class> class TE, class T0, class T1, class T2, class T3,
class T4, class T5, class T6, class T7, class T8>
struct ForEachType<TE, tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8> > {
typedef tuple<typename TE<T0>::Type, typename TE<T1>::Type,
typename TE<T2>::Type, typename TE<T3>::Type,
typename TE<T4>::Type, typename TE<T5>::Type,
typename TE<T6>::Type, typename TE<T7>::Type,
typename TE<T8>::Type> Type;
};
// template <template <class> class TE, class T0, class T1, class T2, class T3,
// class T4, class T5, class T6, class T7, class T8, class T9>
// struct ForEachType<TE, tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9> > {
// typedef tuple<typename TE<T0>::Type, typename TE<T1>::Type,
// typename TE<T2>::Type, typename TE<T3>::Type,
// typename TE<T4>::Type, typename TE<T5>::Type,
// typename TE<T6>::Type, typename TE<T7>::Type,
// typename TE<T8>::Type, typename TE<T9>::Type> Type;
// };
#endif // !defined(DOXYGEN)
//////////////////////////////////////////////////////////////////////
//
//
// genericTransformTuple() needs to be overloaded for each tuple size (we
// limit ourselves to tuple_size <= 10 here). For a given tuple size it
// needs to be overloaded for all combinations of const and non-const
// argument references. (On the one hand, we want to allow modifyable
// arguments, so const references alone are not sufficient. On the other
// hand, we also want to allow rvalues (literals) as argument, which do not
// bind to non-const references.)
//
// We can half the number of specializations required by introducing a
// function genericTransformTupleBackend(), which is overloaded for each
// tuple size and for const and non-const tuple arguments; the functor
// argument is always given as as (non-const) reference. When
// genericTransformTupleBackend() is called, the type of the Functor template
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
// parameter is the deduced as either "SomeType" or "const SomeType",
// depending on whether the function argument is a non-const or a const
// lvalue of type "SomeType". As explained above, this does not work for
// rvalues (i.e. literals).
//
// To make it work for literals of functors as well, we wrap the call to
// genericTransformTupleBackend() in a function genericTransformTuple().
// genericTransformTuple() needs to be overloaded for non-const and const
// tuples and functors -- 4 overloads only. Inside genericTransformTuple()
// the functor is an lvalue no matter whether the argument was an lvalue or
// an rvalue. There is no need need to overload genericTransformTuple() for
// all tuple sizes -- this is done by the underlying
// genericTransformTupleBackend().
// genericTransformTupleBackend() is an implementation detail -- hide it
// from Doxygen
#ifndef DOXYGEN
// 0-element tuple
// This is a special case: we touch neither the tuple nor the functor, so
// const references are sufficient and we don't need to overload
template<class Functor>
typename ForEachType<Functor::template TypeEvaluator,
tuple<> >::Type
genericTransformTupleBackend
(const tuple<>& t, const Functor& f)
{
return typename ForEachType<Functor::template TypeEvaluator,
tuple<> >::Type
();
}
// 1-element tuple
template<class T0, class Functor>
typename ForEachType<Functor::template TypeEvaluator,
tuple<T0> >::Type
genericTransformTupleBackend
(tuple<T0>& t, Functor& f)
{
return typename ForEachType<Functor::template TypeEvaluator,
tuple<T0> >::Type
(f(get<0>(t)));
}
template<class T0, class Functor>
typename ForEachType<Functor::template TypeEvaluator,
tuple<T0> >::Type
genericTransformTupleBackend
(const tuple<T0>& t, Functor& f)
{
return typename ForEachType<Functor::template TypeEvaluator,
tuple<T0> >::Type
(f(get<0>(t)));
}
// 2-element tuple
template<class T0, class T1, class Functor>
typename ForEachType<Functor::template TypeEvaluator,
tuple<T0, T1> >::Type
genericTransformTupleBackend
(tuple<T0, T1>& t, Functor& f)
{
return typename ForEachType<Functor::template TypeEvaluator,
tuple<T0, T1> >::Type
(f(get<0>(t)), f(get<1>(t)));
}
template<class T0, class T1, class Functor>
typename ForEachType<Functor::template TypeEvaluator,
tuple<T0, T1> >::Type
genericTransformTupleBackend
(const tuple<T0, T1>& t, Functor& f)
{
return typename ForEachType<Functor::template TypeEvaluator,
tuple<T0, T1> >::Type
(f(get<0>(t)), f(get<1>(t)));
}
// 3-element tuple
template<class T0, class T1, class T2, class Functor>
typename ForEachType<Functor::template TypeEvaluator,
tuple<T0, T1, T2> >::Type
genericTransformTupleBackend
(tuple<T0, T1, T2>& t, Functor& f)
{
return typename ForEachType<Functor::template TypeEvaluator,
tuple<T0, T1, T2> >::Type
(f(get<0>(t)), f(get<1>(t)), f(get<2>(t)));
}
template<class T0, class T1, class T2, class Functor>
typename ForEachType<Functor::template TypeEvaluator,
tuple<T0, T1, T2> >::Type
genericTransformTupleBackend
(const tuple<T0, T1, T2>& t, Functor& f)
{
return typename ForEachType<Functor::template TypeEvaluator,
tuple<T0, T1, T2> >::Type
(f(get<0>(t)), f(get<1>(t)), f(get<2>(t)));
}
// 4-element tuple
template<class T0, class T1, class T2, class T3, class Functor>
typename ForEachType<Functor::template TypeEvaluator,
tuple<T0, T1, T2, T3> >::Type
genericTransformTupleBackend
(tuple<T0, T1, T2, T3>& t, Functor& f)
{
return typename ForEachType<Functor::template TypeEvaluator,
tuple<T0, T1, T2, T3> >::Type
(f(get<0>(t)), f(get<1>(t)), f(get<2>(t)), f(get<3>(t)));
}
template<class T0, class T1, class T2, class T3, class Functor>
typename ForEachType<Functor::template TypeEvaluator,
tuple<T0, T1, T2, T3> >::Type
genericTransformTupleBackend
(const tuple<T0, T1, T2, T3>& t, Functor& f)
{
return typename ForEachType<Functor::template TypeEvaluator,
tuple<T0, T1, T2, T3> >::Type
(f(get<0>(t)), f(get<1>(t)), f(get<2>(t)), f(get<3>(t)));
}
// 5-element tuple
template<class T0, class T1, class T2, class T3, class T4, class Functor>
typename ForEachType<Functor::template TypeEvaluator,
tuple<T0, T1, T2, T3, T4> >::Type
genericTransformTupleBackend
(tuple<T0, T1, T2, T3, T4>& t, Functor& f)
{
return typename ForEachType<Functor::template TypeEvaluator,
tuple<T0, T1, T2, T3, T4> >::Type
(f(get<0>(t)), f(get<1>(t)), f(get<2>(t)), f(get<3>(t)), f(get<4>(t)));
}
template<class T0, class T1, class T2, class T3, class T4, class Functor>
typename ForEachType<Functor::template TypeEvaluator,
tuple<T0, T1, T2, T3, T4> >::Type
genericTransformTupleBackend
(const tuple<T0, T1, T2, T3, T4>& t, Functor& f)
{
return typename ForEachType<Functor::template TypeEvaluator,
tuple<T0, T1, T2, T3, T4> >::Type
(f(get<0>(t)), f(get<1>(t)), f(get<2>(t)), f(get<3>(t)), f(get<4>(t)));
}
// 6-element tuple
template<class T0, class T1, class T2, class T3, class T4, class T5,
class Functor>
typename ForEachType<Functor::template TypeEvaluator,
tuple<T0, T1, T2, T3, T4, T5> >::Type
genericTransformTupleBackend
(tuple<T0, T1, T2, T3, T4, T5>& t, Functor& f)
{
return typename ForEachType<Functor::template TypeEvaluator,
tuple<T0, T1, T2, T3, T4, T5> >::Type
(f(get<0>(t)), f(get<1>(t)), f(get<2>(t)), f(get<3>(t)), f(get<4>(t)),
f(get<5>(t)));
}
template<class T0, class T1, class T2, class T3, class T4, class T5,
class Functor>
typename ForEachType<Functor::template TypeEvaluator,
tuple<T0, T1, T2, T3, T4, T5> >::Type
genericTransformTupleBackend
(const tuple<T0, T1, T2, T3, T4, T5>& t, Functor& f)
{
return typename ForEachType<Functor::template TypeEvaluator,
tuple<T0, T1, T2, T3, T4, T5> >::Type
(f(get<0>(t)), f(get<1>(t)), f(get<2>(t)), f(get<3>(t)), f(get<4>(t)),
f(get<5>(t)));
}
// 7-element tuple
template<class T0, class T1, class T2, class T3, class T4, class T5,
class T6, class Functor>
typename ForEachType<Functor::template TypeEvaluator,
tuple<T0, T1, T2, T3, T4, T5, T6> >::Type
genericTransformTupleBackend
(tuple<T0, T1, T2, T3, T4, T5, T6>& t, Functor& f)
{
return typename ForEachType<Functor::template TypeEvaluator,
tuple<T0, T1, T2, T3, T4, T5, T6> >::Type
(f(get<0>(t)), f(get<1>(t)), f(get<2>(t)), f(get<3>(t)), f(get<4>(t)),
f(get<5>(t)), f(get<6>(t)));
}
template<class T0, class T1, class T2, class T3, class T4, class T5,
class T6, class Functor>
typename ForEachType<Functor::template TypeEvaluator,
tuple<T0, T1, T2, T3, T4, T5, T6> >::Type
genericTransformTupleBackend
(const tuple<T0, T1, T2, T3, T4, T5, T6>& t, Functor& f)
{
return typename ForEachType<Functor::template TypeEvaluator,
tuple<T0, T1, T2, T3, T4, T5, T6> >::Type
(f(get<0>(t)), f(get<1>(t)), f(get<2>(t)), f(get<3>(t)), f(get<4>(t)),
f(get<5>(t)), f(get<6>(t)));
}
// 8-element tuple
template<class T0, class T1, class T2, class T3, class T4, class T5,
class T6, class T7, class Functor>
typename ForEachType<Functor::template TypeEvaluator,
tuple<T0, T1, T2, T3, T4, T5, T6, T7> >::Type
genericTransformTupleBackend
(tuple<T0, T1, T2, T3, T4, T5, T6, T7>& t, Functor& f)
{
return typename ForEachType<Functor::template TypeEvaluator,
tuple<T0, T1, T2, T3, T4, T5, T6, T7> >::Type
(f(get<0>(t)), f(get<1>(t)), f(get<2>(t)), f(get<3>(t)), f(get<4>(t)),
f(get<5>(t)), f(get<6>(t)), f(get<7>(t)));
}
template<class T0, class T1, class T2, class T3, class T4, class T5,
class T6, class T7, class Functor>
typename ForEachType<Functor::template TypeEvaluator,
tuple<T0, T1, T2, T3, T4, T5, T6, T7> >::Type
genericTransformTupleBackend
(const tuple<T0, T1, T2, T3, T4, T5, T6, T7>& t, Functor& f)
{
return typename ForEachType<Functor::template TypeEvaluator,
tuple<T0, T1, T2, T3, T4, T5, T6, T7> >::Type
(f(get<0>(t)), f(get<1>(t)), f(get<2>(t)), f(get<3>(t)), f(get<4>(t)),
f(get<5>(t)), f(get<6>(t)), f(get<7>(t)));
}
// 9-element tuple
template<class T0, class T1, class T2, class T3, class T4, class T5,
class T6, class T7, class T8, class Functor>
typename ForEachType<Functor::template TypeEvaluator,
tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8> >::Type
genericTransformTupleBackend
(tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8>& t, Functor& f)
{
return typename ForEachType<Functor::template TypeEvaluator,
tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8> >::Type
(f(get<0>(t)), f(get<1>(t)), f(get<2>(t)), f(get<3>(t)), f(get<4>(t)),
f(get<5>(t)), f(get<6>(t)), f(get<7>(t)), f(get<8>(t)));
}
template<class T0, class T1, class T2, class T3, class T4, class T5,
class T6, class T7, class T8, class Functor>
typename ForEachType<Functor::template TypeEvaluator,
tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8> >::Type
genericTransformTupleBackend
(const tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8>& t, Functor& f)
{
return typename ForEachType<Functor::template TypeEvaluator,
tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8> >::Type
(f(get<0>(t)), f(get<1>(t)), f(get<2>(t)), f(get<3>(t)), f(get<4>(t)),
f(get<5>(t)), f(get<6>(t)), f(get<7>(t)), f(get<8>(t)));
}
// // 10-element tuple
// template<class T0, class T1, class T2, class T3, class T4, class T5,
// class T6, class T7, class T8, class T9, class Functor>
// typename ForEachType<Functor::template TypeEvaluator,
// tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9> >::Type
// genericTransformTupleBackend
// (tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>& t, Functor& f)
// {
// return typename ForEachType<Functor::template TypeEvaluator,
// tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9> >::Type
// (f(get<0>(t)), f(get<1>(t)), f(get<2>(t)), f(get<3>(t)), f(get<4>(t)),
// f(get<5>(t)), f(get<6>(t)), f(get<7>(t)), f(get<8>(t)), f(get<9>(t)));
// }
// template<class T0, class T1, class T2, class T3, class T4, class T5,
// class T6, class T7, class T8, class T9, class Functor>
// typename ForEachType<Functor::template TypeEvaluator,
// tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9> >::Type
// genericTransformTupleBackend
// (const tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>& t, Functor& f)
// {
// return typename ForEachType<Functor::template TypeEvaluator,
// tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9> >::Type
// (f(get<0>(t)), f(get<1>(t)), f(get<2>(t)), f(get<3>(t)), f(get<4>(t)),
// f(get<5>(t)), f(get<6>(t)), f(get<7>(t)), f(get<8>(t)), f(get<9>(t)));
// }
#endif // ! defined(DOXYGEN)
//! transform a tuple object into another tuple object
/**
* \code
* \endcode
* This function does for the value of a tuple what ForEachType does for the
* type of a tuple: it transforms the value using a user-provided policy
* functor.
*
* \param t The tuple value to transform.
* \param f The functor to use to transform the values.
*
* The functor should have the following form:
* \code
* struct Functor {
* template<class> struct TypeEvaluator {
* typedef user-defined Type;
* };
*
* template<class T>
* typename TypeEvaluator<T>::Type operator()(T& val);
*
* template<class T>
* typename TypeEvaluator<T>::Type operator()(T& val) const;
*
* template<class T>
* typename TypeEvaluator<T>::Type operator()(const T& val);
*
* template<class T>
* typename TypeEvaluator<T>::Type operator()(const T& val) const;
* };
* \endcode
* The member class template \c TypeEvaluator should be a class template
* suitable as the \c TypeEvaluator template parameter for ForEachType. The
* function call operator \c operator() is used to transform the value; only
* the signatures of \c operator() which are actually used must be present.
*
* There are overloaded definitions of genericTransformTuple() wich take
* constant tuple and functor arguments so rvalues are permissible as
* arguments here. These overloaded definitions are not documented
* separately.
*/
template<class Tuple, class Functor>
typename ForEachType<Functor::template TypeEvaluator, Tuple>::Type
genericTransformTuple(Tuple& t, Functor& f) {
return genericTransformTupleBackend(t, f);
}
#ifndef DOXYGEN
template<class Tuple, class Functor>
typename ForEachType<Functor::template TypeEvaluator, Tuple>::Type
genericTransformTuple(const Tuple& t, Functor& f) {
return genericTransformTupleBackend(t, f);
}
template<class Tuple, class Functor>
typename ForEachType<Functor::template TypeEvaluator, Tuple>::Type
genericTransformTuple(Tuple& t, const Functor& f) {
return genericTransformTupleBackend(t, f);
}
template<class Tuple, class Functor>
typename ForEachType<Functor::template TypeEvaluator, Tuple>::Type
genericTransformTuple(const Tuple& t, const Functor& f) {
return genericTransformTupleBackend(t, f);
}
#endif // ! defined(DOXYGEN)
////////////////////////////////////////////////////////////////////////
//
// transformTuple() related stuff
//
//! helper class to implement transformTuple()
/**
* \tparam TE TypeEvaluator class template.
* \tparam An Type of extra arguments to pass to \c TE<T>::apply(). \c void
* means "no argument". Only trailing arguments may be void.
*
* This class stores references to a number of arguments it receives in the
* constructor. Later, its function call operator \c operator() may be
* called with a parameter \c t of type \c T. \c operator() will then call
* the static method \c TE<T>::apply(t,args...), where \c args... is the
* sequence of arguments the object was constructed with. \c operator()
* will convert the result to type \c TE<T>::Type and return it.
*
* \c TE should be an extended version of the \c TypeEvaluator class
* template parameter of ForEachType, for instance:
* \code
* template <class T>
* struct TypeEvaluator {
* typedef T* Type;
* static Type apply(T& t, void* a0) {
* return t ? &t : static_cast<T*>(a0);
* }
* };
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
* \endcode
* This example is for a TransformTupleFunctor with one argument, i.e. \c
* A0!=void and all other \c An=void. For the type transformation, it will
* transform a value of some type T into a pointer to T. For the value
* transformation, it will take a reference to a value of type T and return
* the pointer to that value, unless the value evaluates to false in boolean
* context. If the value evaluates to false, it will instead return the
* pointer from the extra argument.
*/
template<template<class> class TE, class A0 = void, class A1 = void,
class A2 = void, class A3 = void, class A4 = void, class A5 = void,
class A6 = void, class A7 = void, class A8 = void, class A9 = void>
class TransformTupleFunctor {
A0& a0; A1& a1; A2& a2; A3& a3; A4& a4; A5& a5; A6& a6; A7& a7; A8& a8;
A9& a9;
public:
//! export the TypeEvaluator template class for genericTransformTuple()
template<class T> struct TypeEvaluator : public TE<T> {};
//! constructor
/**
* The actual number of arguments varies between specializations, the
* actual number of arguments here is equal to the number of non-\c void
* class template arguments \c An.
*/
TransformTupleFunctor(A0& a0_, A1& a1_, A2& a2_, A3& a3_, A4& a4_, A5& a5_,
A6& a6_, A7& a7_, A8& a8_, A9& a9_)
: a0(a0_), a1(a1_), a2(a2_), a3(a3_), a4(a4_), a5(a5_), a6(a6_), a7(a7_),
a8(a8_), a9(a9_)
{ }
//! call \c TE<T>::apply(t,args...)
/**
* This calls the static apply method of the TypeEvaluator class
* template.
*
* \note There is no need to overload \c operator() with at \c const \c T&
* argument, since genericTransformTuple() will always use an lvalue
* argument.
*/
template<class T>
typename TE<T>::Type operator()(T& t) const {
return TE<T>::apply(t, a0, a1, a2, a3, a4, a5, a6, a7, a8, a9);
}
};
//! syntactic sugar for creation of TransformTupleFunctor objects
/**
* \code
* \endcode
* \tparam TE TypeEvaluator class template.
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
* \tparam A0 Type of extra arguments to pass to \c TE<T>::apply(). It
* should not be necessary to specify these template parameters
* explicitly since they can be deduced.
* \tparam A1 Type of extra arguments to pass to \c TE<T>::apply(). It
* should not be necessary to specify these template parameters
* explicitly since they can be deduced.
* \tparam A2 Type of extra arguments to pass to \c TE<T>::apply(). It
* should not be necessary to specify these template parameters
* explicitly since they can be deduced.
* \tparam A3 Type of extra arguments to pass to \c TE<T>::apply(). It
* should not be necessary to specify these template parameters
* explicitly since they can be deduced.
* \tparam A4 Type of extra arguments to pass to \c TE<T>::apply(). It
* should not be necessary to specify these template parameters
* explicitly since they can be deduced.
* \tparam A5 Type of extra arguments to pass to \c TE<T>::apply(). It
* should not be necessary to specify these template parameters
* explicitly since they can be deduced.
* \tparam A6 Type of extra arguments to pass to \c TE<T>::apply(). It
* should not be necessary to specify these template parameters
* explicitly since they can be deduced.
* \tparam A7 Type of extra arguments to pass to \c TE<T>::apply(). It
* should not be necessary to specify these template parameters
* explicitly since they can be deduced.
* \tparam A8 Type of extra arguments to pass to \c TE<T>::apply(). It
* should not be necessary to specify these template parameters
* explicitly since they can be deduced.
* \tparam A9 Type of extra arguments to pass to \c TE<T>::apply(). It
* should not be necessary to specify these template parameters
* explicitly since they can be deduced.
*
* \param a0 Arguments to save references to in the TransformTupleFunctor.
* \param a1 Arguments to save references to in the TransformTupleFunctor.
* \param a2 Arguments to save references to in the TransformTupleFunctor.
* \param a3 Arguments to save references to in the TransformTupleFunctor.
* \param a4 Arguments to save references to in the TransformTupleFunctor.
* \param a5 Arguments to save references to in the TransformTupleFunctor.
* \param a6 Arguments to save references to in the TransformTupleFunctor.
* \param a7 Arguments to save references to in the TransformTupleFunctor.
* \param a8 Arguments to save references to in the TransformTupleFunctor.
* \param a9 Arguments to save references to in the TransformTupleFunctor.
* There are overloads of this function (not documented separately) for any
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
* number of arguments, up to an implementation-defined arbitrary limit.
* The number of arguments given determines the number of non-\c void
* template arguments in the type of the returned TransformTupleFunctor.
*/
template<template<class> class TE, class A0, class A1, class A2, class A3,
class A4, class A5, class A6, class A7, class A8, class A9>
TransformTupleFunctor<TE, A0, A1, A2, A3, A4, A5, A6, A7, A8, A9>
makeTransformTupleFunctor(A0& a0, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5,
A6& a6, A7& a7, A8& a8, A9& a9) {
return TransformTupleFunctor<TE, A0, A1, A2, A3, A4, A5, A6, A7, A8, A9>
(a0, a1, a2, a3, a4, a5, a6, a7, a8, a9);
}
#ifndef DOXYGEN
// 0 argument
template<template<class> class TE>
struct TransformTupleFunctor<TE>
{
template<class T> struct TypeEvaluator : public TE<T> {};
template<class T>
typename TE<T>::Type operator()(T& t) const {
return TE<T>::apply(t);
}
};
template<template<class> class TE>
TransformTupleFunctor<TE>
makeTransformTupleFunctor() {
return TransformTupleFunctor<TE>
();
}
// 1 argument
template<template<class> class TE, class A0>
class TransformTupleFunctor<TE, A0>
{
A0& a0;
public:
template<class T> struct TypeEvaluator : public TE<T> {};
TransformTupleFunctor(A0& a0_)
: a0(a0_)
{ }
template<class T>
typename TE<T>::Type operator()(T& t) const {
return TE<T>::apply(t, a0);
}
};
template<template<class> class TE, class A0>
TransformTupleFunctor<TE, A0>
makeTransformTupleFunctor(A0& a0) {
return TransformTupleFunctor<TE, A0>
(a0);
}
// 2 argument
template<template<class> class TE, class A0, class A1>
class TransformTupleFunctor<TE, A0, A1>
{
A0& a0; A1& a1;
public:
template<class T> struct TypeEvaluator : public TE<T> {};
TransformTupleFunctor(A0& a0_, A1& a1_)
: a0(a0_), a1(a1_)
{ }
template<class T>
typename TE<T>::Type operator()(T& t) const {
return TE<T>::apply(t, a0, a1);
}
};
template<template<class> class TE, class A0, class A1>
TransformTupleFunctor<TE, A0, A1>
makeTransformTupleFunctor(A0& a0, A1& a1) {
return TransformTupleFunctor<TE, A0, A1>
(a0, a1);
}
// 3 arguments
template<template<class> class TE, class A0, class A1, class A2>
class TransformTupleFunctor<TE, A0, A1, A2>
{
A0& a0; A1& a1; A2& a2;
public:
template<class T> struct TypeEvaluator : public TE<T> {};
TransformTupleFunctor(A0& a0_, A1& a1_, A2& a2_)
: a0(a0_), a1(a1_), a2(a2_)
{ }
template<class T>
typename TE<T>::Type operator()(T& t) const {
return TE<T>::apply(t, a0, a1, a2);
}
};
template<template<class> class TE, class A0, class A1, class A2>
TransformTupleFunctor<TE, A0, A1, A2>
makeTransformTupleFunctor(A0& a0, A1& a1, A2& a2) {
return TransformTupleFunctor<TE, A0, A1, A2>
(a0, a1, a2);
}
// 4 arguments
template<template<class> class TE, class A0, class A1, class A2, class A3>
class TransformTupleFunctor<TE, A0, A1, A2, A3>
{
A0& a0; A1& a1; A2& a2; A3& a3;
public:
template<class T> struct TypeEvaluator : public TE<T> {};
TransformTupleFunctor(A0& a0_, A1& a1_, A2& a2_, A3& a3_)
: a0(a0_), a1(a1_), a2(a2_), a3(a3_)
{ }
template<class T>
typename TE<T>::Type operator()(T& t) const {
return TE<T>::apply(t, a0, a1, a2, a3);
}
};
template<template<class> class TE, class A0, class A1, class A2, class A3>
TransformTupleFunctor<TE, A0, A1, A2, A3>
makeTransformTupleFunctor(A0& a0, A1& a1, A2& a2, A3& a3) {
return TransformTupleFunctor<TE, A0, A1, A2, A3>
(a0, a1, a2, a3);
}
// 5 arguments
template<template<class> class TE, class A0, class A1, class A2, class A3,
class A4>
class TransformTupleFunctor<TE, A0, A1, A2, A3, A4>
{
A0& a0; A1& a1; A2& a2; A3& a3; A4& a4;
public:
template<class T> struct TypeEvaluator : public TE<T> {};
TransformTupleFunctor(A0& a0_, A1& a1_, A2& a2_, A3& a3_, A4& a4_)
: a0(a0_), a1(a1_), a2(a2_), a3(a3_), a4(a4_)
{ }
template<class T>
typename TE<T>::Type operator()(T& t) const {
return TE<T>::apply(t, a0, a1, a2, a3, a4);
}
};
template<template<class> class TE, class A0, class A1, class A2, class A3,
class A4>
TransformTupleFunctor<TE, A0, A1, A2, A3, A4>
makeTransformTupleFunctor(A0& a0, A1& a1, A2& a2, A3& a3, A4& a4) {
return TransformTupleFunctor<TE, A0, A1, A2, A3, A4>
(a0, a1, a2, a3, a4);
}
// 6 arguments
template<template<class> class TE, class A0, class A1, class A2, class A3,
class A4, class A5>
class TransformTupleFunctor<TE, A0, A1, A2, A3, A4, A5>
{
A0& a0; A1& a1; A2& a2; A3& a3; A4& a4; A5& a5;
public:
template<class T> struct TypeEvaluator : public TE<T> {};
TransformTupleFunctor(A0& a0_, A1& a1_, A2& a2_, A3& a3_, A4& a4_, A5& a5_)
: a0(a0_), a1(a1_), a2(a2_), a3(a3_), a4(a4_), a5(a5_)
{ }
template<class T>
typename TE<T>::Type operator()(T& t) const {
return TE<T>::apply(t, a0, a1, a2, a3, a4, a5);
}
};
template<template<class> class TE, class A0, class A1, class A2, class A3,
class A4, class A5>
TransformTupleFunctor<TE, A0, A1, A2, A3, A4, A5>
makeTransformTupleFunctor(A0& a0, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5) {
return TransformTupleFunctor<TE, A0, A1, A2, A3, A4, A5>
(a0, a1, a2, a3, a4, a5);
}
// 7 arguments
template<template<class> class TE, class A0, class A1, class A2, class A3,
class A4, class A5, class A6>
class TransformTupleFunctor<TE, A0, A1, A2, A3, A4, A5, A6>
{
A0& a0; A1& a1; A2& a2; A3& a3; A4& a4; A5& a5; A6& a6;
public:
template<class T> struct TypeEvaluator : public TE<T> {};
TransformTupleFunctor(A0& a0_, A1& a1_, A2& a2_, A3& a3_, A4& a4_, A5& a5_,
A6& a6_)
: a0(a0_), a1(a1_), a2(a2_), a3(a3_), a4(a4_), a5(a5_), a6(a6_)
{ }
template<class T>
typename TE<T>::Type operator()(T& t) const {
return TE<T>::apply(t, a0, a1, a2, a3, a4, a5, a6);
}
};
template<template<class> class TE, class A0, class A1, class A2, class A3,
class A4, class A5, class A6>
TransformTupleFunctor<TE, A0, A1, A2, A3, A4, A5, A6>
makeTransformTupleFunctor(A0& a0, A1& a1, A2& a2, A3& a3, A4& a4, A5& a5,
A6& a6) {
return TransformTupleFunctor<TE, A0, A1, A2, A3, A4, A5, A6>
(a0, a1, a2, a3, a4, a5, a6);
}
// 8 arguments
template<template<class> class TE, class A0, class A1, class A2, class A3,
class A4, class A5, class A6, class A7>
class TransformTupleFunctor<TE, A0, A1, A2, A3, A4, A5, A6, A7>
{
A0& a0; A1& a1; A2& a2; A3& a3; A4& a4; A5& a5; A6& a6; A7& a7;
public:
template<class T> struct TypeEvaluator : public TE<T> {};