Skip to content
Snippets Groups Projects
densematrix.hh 32.5 KiB
Newer Older
  • Learn to ignore specific revisions
  • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
    // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
    // vi: set et ts=4 sw=2 sts=2:
    // $Id: fmatrix.hh 6128 2010-09-08 13:50:00Z christi $
    #ifndef DUNE_DENSEMATRIX_HH
    #define DUNE_DENSEMATRIX_HH
    
    #include <cmath>
    #include <cstddef>
    #include <iostream>
    #include <vector>
    
    #include <dune/common/misc.hh>
    #include <dune/common/exceptions.hh>
    #include <dune/common/fvector.hh>
    #include <dune/common/precision.hh>
    #include <dune/common/static_assert.hh>
    
    namespace Dune
    {
    
      template<typename M> class DenseMatrix;
    
      template<typename M>
      struct FieldTraits< DenseMatrix<M> >
      {
        typedef const typename FieldTraits< typename DenseMatVecTraits<M>::value_type >::field_type field_type;
        typedef const typename FieldTraits< typename DenseMatVecTraits<M>::value_type >::real_type real_type;
      };
    
      /*
         work around a problem of FieldMatrix/FieldVector,
         there is no unique way to obtain the size of a class
       */
      template<class K, int N, int M> class FieldMatrix;
      template<class K, int N> class FieldVector;
      namespace {
        template<class V>
        struct VectorSize
        {
          static typename V::size_type size(const V & v) { return v.size(); }
        };
    
        template<class K, int N>
        struct VectorSize< const FieldVector<K,N> >
        {
          typedef FieldVector<K,N> V;
          static typename V::size_type size(const V & v) { return N; }
        };
      };
    
      /**
          @addtogroup DenseMatVec
          @{
       */
    
      /*! \file
    
         \brief  This file implements a matrix constructed from a given type
         representing a field and compile-time given number of rows and columns.
       */
    
      /**
         \brief you have to specialize this function for any type T that should be assignable to a DenseMatrix
       */
      template<typename M, typename T>
      void istl_assign_to_fmatrix(DenseMatrix<M>& f, const T& t)
      {
        DUNE_THROW(NotImplemented, "You need to specialise this function for type T!");
      }
    
      namespace
      {
        template<bool b>
        struct DenseMatrixAssigner
        {
          template<typename M, typename T>
          static void assign(DenseMatrix<M>& fm, const T& t)
          {
            istl_assign_to_fmatrix(fm, t);
          }
    
        };
    
    
        template<>
        struct DenseMatrixAssigner<true>
        {
          template<typename M, typename T>
          static void assign(DenseMatrix<M>& fm, const T& t)
          {
            fm = static_cast<const typename DenseMatVecTraits<M>::value_type>(t);
          }
        };
      }
    
      /** @brief Error thrown if operations of a FieldMatrix fail. */
      class FMatrixError : public Exception {};
    
      /**
          @brief A dense n x m matrix.
    
          Matrices represent linear maps from a vector space V to a vector space W.
          This class represents such a linear map by storing a two-dimensional
          %array of numbers of a given field type K. The number of rows and
          columns is given at compile time.
    
          \tparam MAT type of the matrix implementation
       */
      template<typename MAT>
      class DenseMatrix
      {
        typedef DenseMatVecTraits<MAT> Traits;
    
        // Curiously recuring template pattern
        MAT & asImp() { return static_cast<MAT&>(*this); }
        const MAT & asImp() const { return static_cast<const MAT&>(*this); }
    
      public:
        //===== type definitions and constants
    
        //! type of derived matrix class
        typedef typename Traits::derived_type derived_type;
    
        //! export the type representing the field
        typedef typename Traits::value_type value_type;
    
        //! export the type representing the field
        typedef typename Traits::value_type field_type;
    
        //! export the type representing the components
        typedef typename Traits::value_type block_type;
    
        //! The type used for the index access and size operation
        typedef typename Traits::size_type size_type;
    
        //! The type used to represent a row (must fulfill the Dune::DenseVector interface)
        typedef typename Traits::row_type row_type;
    
        //! We are at the leaf of the block recursion
        enum {
          //! The number of block levels we contain. This is 1.
          blocklevel = 1
        };
    
        //===== access to components
    
        //! random access
        row_type & operator[] (size_type i)
        {
          return asImp().mat_access(i);
        }
    
        const row_type & operator[] (size_type i) const
        {
          return asImp().mat_access(i);
        }
    
        //! size method (number of rows)
        size_type size() const
        {
          return rows();
        }
    
        //===== iterator interface to rows of the matrix
        //! Iterator class for sequential access
        typedef DenseIterator<DenseMatrix,row_type> Iterator;
        //! typedef for stl compliant access
        typedef Iterator iterator;
        //! rename the iterators for easier access
        typedef Iterator RowIterator;
        //! rename the iterators for easier access
        typedef typename row_type::Iterator ColIterator;
    
        //! begin iterator
        Iterator begin ()
        {
          return Iterator(*this,0);
        }
    
        //! end iterator
        Iterator end ()
        {
          return Iterator(*this,rows());
        }
    
        //! begin iterator
        Iterator rbegin ()
        {
          return Iterator(*this,rows()-1);
        }
    
        //! end iterator
        Iterator rend ()
        {
          return Iterator(*this,-1);
        }
    
        //! Iterator class for sequential access
        typedef DenseIterator<const DenseMatrix,const row_type> ConstIterator;
        //! typedef for stl compliant access
        typedef ConstIterator const_iterator;
        //! rename the iterators for easier access
        typedef ConstIterator ConstRowIterator;
        //! rename the iterators for easier access
        typedef typename row_type::ConstIterator ConstColIterator;
    
        //! begin iterator
        ConstIterator begin () const
        {
          return ConstIterator(*this,0);
        }
    
        //! end iterator
        ConstIterator end () const
        {
          return ConstIterator(*this,rows());
        }
    
        //! begin iterator
        ConstIterator rbegin () const
        {
          return ConstIterator(*this,rows()-1);
        }
    
        //! end iterator
        ConstIterator rend () const
        {
          return ConstIterator(*this,-1);
        }
    
        //===== assignment from scalar
        DenseMatrix& operator= (const field_type& f)
        {
          for (size_type i=0; i<rows(); i++)
            (*this)[i] = f;
          return *this;
        }
    
        template<typename T>
        DenseMatrix& operator= (const T& t)
        {
          DenseMatrixAssigner<Conversion<T,field_type>::exists>::assign(*this, t);
          return *this;
        }
        //===== vector space arithmetic
    
        //! vector space addition
        DenseMatrix& operator+= (const DenseMatrix& y)
        {
          for (size_type i=0; i<rows(); i++)
            (*this)[i] += y[i];
          return *this;
        }
    
        //! vector space subtraction
        DenseMatrix& operator-= (const DenseMatrix& y)
        {
          for (size_type i=0; i<rows(); i++)
            (*this)[i] -= y[i];
          return *this;
        }
    
        //! vector space multiplication with scalar
        DenseMatrix& operator*= (const field_type& k)
        {
          for (size_type i=0; i<rows(); i++)
            (*this)[i] *= k;
          return *this;
        }
    
        //! vector space division by scalar
        DenseMatrix& operator/= (const field_type& k)
        {
          for (size_type i=0; i<rows(); i++)
            (*this)[i] /= k;
          return *this;
        }
    
        //! vector space axpy operation (*this += k y)
        DenseMatrix &axpy (const field_type &k, const DenseMatrix &y )
        {
          for( size_type i = 0; i < rows(); ++i )
            (*this)[ i ].axpy( k, y[ i ] );
          return *this;
        }
    
        //! Binary matrix comparison
        bool operator== (const DenseMatrix& y) const
        {
          for (size_type i=0; i<rows(); i++)
            if ((*this)[i]!=y[i])
              return false;
          return true;
        }
        //! Binary vector incomparison
        bool operator!= (const DenseMatrix& y) const
        {
          return !operator==(y);
        }
    
    
        //===== linear maps
    
        //! y = A x
        template<class X, class Y>
        void mv (const X& x, Y& y) const
        {
    #ifdef DUNE_FMatrix_WITH_CHECKING
          assert(&x != &y);
          if (x.N()!=M()) DUNE_THROW(FMatrixError,"Index out of range");
          if (y.N()!=N()) DUNE_THROW(FMatrixError,"Index out of range");
    #endif
          for (size_type i=0; i<rows(); ++i)
          {
            y[i] = 0;
            for (size_type j=0; j<cols(); j++)
              y[i] += (*this)[i][j] * x[j];
          }
        }
    
        //! y = A^T x
        template< class X, class Y >
        void mtv ( const X &x, Y &y ) const
        {
    #ifdef DUNE_FMatrix_WITH_CHECKING
          assert( &x != &y );
          if( x.N() != N() )
            DUNE_THROW( FMatrixError, "Index out of range." );
          if( y.N() != M() )
            DUNE_THROW( FMatrixError, "Index out of range." );
    #endif
          for( size_type i = 0; i < cols(); ++i )
          {
            y[ i ] = 0;
            for( size_type j = 0; j < rows(); ++j )
              y[ i ] += (*this)[ j ][ i ] * x[ j ];
          }
        }
    
        //! y += A x
        template<class X, class Y>
        void umv (const X& x, Y& y) const
        {
    #ifdef DUNE_FMatrix_WITH_CHECKING
          if (x.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
          if (y.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
    #endif
          for (size_type i=0; i<rows(); i++)
            for (size_type j=0; j<cols(); j++)
              y[i] += (*this)[i][j] * x[j];
        }
    
        //! y += A^T x
        template<class X, class Y>
        void umtv (const X& x, Y& y) const
        {
    #ifdef DUNE_FMatrix_WITH_CHECKING
          if (x.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
          if (y.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
    #endif
    
          for (size_type i=0; i<rows(); i++)
            for (size_type j=0; j<cols(); j++)
              y[j] += (*this)[i][j]*x[i];
        }
    
        //! y += A^H x
        template<class X, class Y>
        void umhv (const X& x, Y& y) const
        {
    #ifdef DUNE_FMatrix_WITH_CHECKING
          if (x.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
          if (y.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
    #endif
    
          for (size_type i=0; i<rows(); i++)
            for (size_type j=0; j<cols(); j++)
              y[j] += conjugateComplex((*this)[i][j])*x[i];
        }
    
        //! y -= A x
        template<class X, class Y>
        void mmv (const X& x, Y& y) const
        {
    #ifdef DUNE_FMatrix_WITH_CHECKING
          if (x.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
          if (y.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
    #endif
          for (size_type i=0; i<rows(); i++)
            for (size_type j=0; j<cols(); j++)
              y[i] -= (*this)[i][j] * x[j];
        }
    
        //! y -= A^T x
        template<class X, class Y>
        void mmtv (const X& x, Y& y) const
        {
    #ifdef DUNE_FMatrix_WITH_CHECKING
          if (x.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
          if (y.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
    #endif
    
          for (size_type i=0; i<rows(); i++)
            for (size_type j=0; j<cols(); j++)
              y[j] -= (*this)[i][j]*x[i];
        }
    
        //! y -= A^H x
        template<class X, class Y>
        void mmhv (const X& x, Y& y) const
        {
    #ifdef DUNE_FMatrix_WITH_CHECKING
          if (x.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
          if (y.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
    #endif
    
          for (size_type i=0; i<rows(); i++)
            for (size_type j=0; j<cols(); j++)
              y[j] -= conjugateComplex((*this)[i][j])*x[i];
        }
    
        //! y += alpha A x
        template<class X, class Y>
        void usmv (const field_type& alpha, const X& x, Y& y) const
        {
    #ifdef DUNE_FMatrix_WITH_CHECKING
          if (x.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
          if (y.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
    #endif
          for (size_type i=0; i<rows(); i++)
            for (size_type j=0; j<cols(); j++)
              y[i] += alpha * (*this)[i][j] * x[j];
        }
    
        //! y += alpha A^T x
        template<class X, class Y>
        void usmtv (const field_type& alpha, const X& x, Y& y) const
        {
    #ifdef DUNE_FMatrix_WITH_CHECKING
          if (x.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
          if (y.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
    #endif
    
          for (size_type i=0; i<rows(); i++)
            for (size_type j=0; j<cols(); j++)
              y[j] += alpha*(*this)[i][j]*x[i];
        }
    
        //! y += alpha A^H x
        template<class X, class Y>
        void usmhv (const field_type& alpha, const X& x, Y& y) const
        {
    #ifdef DUNE_FMatrix_WITH_CHECKING
          if (x.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
          if (y.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
    #endif
    
          for (size_type i=0; i<rows(); i++)
            for (size_type j=0; j<cols(); j++)
              y[j] += alpha*conjugateComplex((*this)[i][j])*x[i];
        }
    
        //===== norms
    
        //! frobenius norm: sqrt(sum over squared values of entries)
        typename FieldTraits<value_type>::real_type frobenius_norm () const
        {
          typename FieldTraits<value_type>::real_type sum=(0.0);
          for (size_type i=0; i<rows(); ++i) sum += (*this)[i].two_norm2();
          return fvmeta::sqrt(sum);
        }
    
        //! square of frobenius norm, need for block recursion
        typename FieldTraits<value_type>::real_type frobenius_norm2 () const
        {
          typename FieldTraits<value_type>::real_type sum=(0.0);
          for (size_type i=0; i<rows(); ++i) sum += (*this)[i].two_norm2();
          return sum;
        }
    
        //! infinity norm (row sum norm, how to generalize for blocks?)
        typename FieldTraits<value_type>::real_type infinity_norm () const
        {
          typename remove_const< typename FieldTraits<value_type>::real_type >::type max=(0.0);
          for (size_type i=0; i<rows(); ++i) max = std::max(max,(*this)[i].one_norm());
          return max;
        }
    
        //! simplified infinity norm (uses Manhattan norm for complex values)
        typename FieldTraits<value_type>::real_type infinity_norm_real () const
        {
          typename FieldTraits<value_type>::real_type max(0.0);
          for (size_type i=0; i<rows(); ++i) max = std::max(max,(*this)[i].one_norm_real());
          return max;
        }
    
        //===== solve
    
        /** \brief Solve system A x = b
         *
         * \exception FMatrixError if the matrix is singular
         */
        template <class V>
        void solve (V& x, const V& b) const;
    
        /** \brief Compute inverse
         *
         * \exception FMatrixError if the matrix is singular
         */
        void invert();
    
        //! calculates the determinant of this matrix
        field_type determinant () const;
    
        //! Multiplies M from the left to this matrix
        template<typename M2>
        MAT& leftmultiply (const DenseMatrix<M2>& M)
        {
          assert(M.rows() == M.cols() && M.rows() == rows());
          MAT C(asImp());
    
          for (size_type i=0; i<rows(); i++)
            for (size_type j=0; j<cols(); j++) {
              (*this)[i][j] = 0;
              for (size_type k=0; k<rows(); k++)
                (*this)[i][j] += M[i][k]*C[k][j];
            }
    
          return asImp();
        }
    
        //! Multiplies M from the right to this matrix
        template<typename M2>
        MAT& rightmultiply (const DenseMatrix<M2>& M)
        {
          assert(M.rows() == M.cols() && M.cols() == cols());
          MAT C(asImp());
    
          for (size_type i=0; i<rows(); i++)
            for (size_type j=0; j<cols(); j++) {
              (*this)[i][j] = 0;
              for (size_type k=0; k<cols(); k++)
                (*this)[i][j] += C[i][k]*M[k][j];
            }
          return asImp();
        }
    
    #if 0
        //! Multiplies M from the left to this matrix, this matrix is not modified
        template<int l>
        DenseMatrix<K,l,cols> leftmultiplyany (const FieldMatrix<K,l,rows>& M) const
        {
          FieldMatrix<K,l,cols> C;
    
          for (size_type i=0; i<l; i++) {
            for (size_type j=0; j<cols(); j++) {
              C[i][j] = 0;
              for (size_type k=0; k<rows(); k++)
                C[i][j] += M[i][k]*(*this)[k][j];
            }
          }
          return C;
        }
    
        //! Multiplies M from the right to this matrix, this matrix is not modified
        template<int l>
        FieldMatrix<K,rows,l> rightmultiplyany (const FieldMatrix<K,cols,l>& M) const
        {
          FieldMatrix<K,rows,l> C;
    
          for (size_type i=0; i<rows(); i++) {
            for (size_type j=0; j<l; j++) {
              C[i][j] = 0;
              for (size_type k=0; k<cols(); k++)
                C[i][j] += (*this)[i][k]*M[k][j];
            }
          }
          return C;
        }
    #endif
    
        //===== sizes
    
        //! number of rows
        size_type N () const
        {
          return rows();
        }
    
        //! number of columns
        size_type M () const
        {
          return cols();
        }
    
        //! number of rows
        size_type rows() const
        {
          return asImp().mat_rows();
        }
    
        //! number of columns
        size_type cols() const
        {
          return asImp().mat_cols();
        }
    
        //===== query
    
        //! return true when (i,j) is in pattern
        bool exists (size_type i, size_type j) const
        {
    #ifdef DUNE_FMatrix_WITH_CHECKING
          if (i<0 || i>=n) DUNE_THROW(FMatrixError,"row index out of range");
          if (j<0 || j>=m) DUNE_THROW(FMatrixError,"column index out of range");
    #endif
          return true;
        }
    
      private:
    
    #ifndef DOXYGEN
        struct ElimPivot
        {
          ElimPivot(std::vector<size_type> & pivot);
    
          void swap(int i, int j);
    
          template<typename T>
          void operator()(const T&, int k, int i)
          {}
    
          std::vector<size_type> & pivot_;
        };
    
        template<typename V>
        struct Elim
        {
          Elim(V& rhs);
    
          void swap(int i, int j);
    
          void operator()(const typename V::field_type& factor, int k, int i);
    
          V* rhs_;
        };
    
        struct ElimDet
        {
          ElimDet(field_type& sign) : sign_(sign)
          { sign_ = 1; }
    
          void swap(int i, int j)
          { sign_ *= -1; }
    
          void operator()(const field_type&, int k, int i)
          {}
    
          field_type& sign_;
        };
    #endif // DOXYGEN
    
        template<class Func>
        void luDecomposition(DenseMatrix<MAT>& A, Func func) const;
      };
    
    #ifndef DOXYGEN
      template<typename MAT>
      DenseMatrix<MAT>::ElimPivot::ElimPivot(std::vector<size_type> & pivot)
        : pivot_(pivot)
      {
        typedef typename std::vector<size_type>::size_type size_type;
        for(size_type i=0; i < pivot_.size(); ++i) pivot_[i]=i;
      }
    
      template<typename MAT>
      void DenseMatrix<MAT>::ElimPivot::swap(int i, int j)
      {
        pivot_[i]=j;
      }
    
      template<typename MAT>
      template<typename V>
      DenseMatrix<MAT>::Elim<V>::Elim(V& rhs)
        : rhs_(&rhs)
      {}
    
      template<typename MAT>
      template<typename V>
      void DenseMatrix<MAT>::Elim<V>::swap(int i, int j)
      {
        std::swap((*rhs_)[i], (*rhs_)[j]);
      }
    
      template<typename MAT>
      template<typename V>
      void DenseMatrix<MAT>::
      Elim<V>::operator()(const typename V::field_type& factor, int k, int i)
      {
        (*rhs_)[k] -= factor*(*rhs_)[i];
      }
      template<typename MAT>
      template<typename Func>
      inline void DenseMatrix<MAT>::luDecomposition(DenseMatrix<MAT>& A, Func func) const
      {
        typename FieldTraits<value_type>::real_type norm =
          A.infinity_norm_real(); // for relative thresholds
        typename FieldTraits<value_type>::real_type pivthres =
          std::max(FMatrixPrecision<>::absolute_limit(),norm*FMatrixPrecision<>::pivoting_limit());
        typename FieldTraits<value_type>::real_type singthres =
          std::max(FMatrixPrecision<>::absolute_limit(),norm*FMatrixPrecision<>::singular_limit());
    
        // LU decomposition of A in A
        for (size_type i=0; i<rows(); i++)  // loop over all rows
        {
          typename FieldTraits<value_type>::real_type pivmax=fvmeta::absreal(A[i][i]);
    
          // pivoting ?
          if (pivmax<pivthres)
          {
            // compute maximum of column
            size_type imax=i;
            typename FieldTraits<value_type>::real_type abs(0.0);
            for (size_type k=i+1; k<rows(); k++)
              if ((abs=fvmeta::absreal(A[k][i]))>pivmax)
              {
                pivmax = abs; imax = k;
              }
            // swap rows
            if (imax!=i) {
              for (size_type j=0; j<rows(); j++)
                std::swap(A[i][j],A[imax][j]);
              func.swap(i, imax); // swap the pivot or rhs
            }
          }
    
          // singular ?
          if (pivmax<singthres)
            DUNE_THROW(FMatrixError,"matrix is singular");
    
          // eliminate
          for (size_type k=i+1; k<rows(); k++)
          {
            field_type factor = A[k][i]/A[i][i];
            A[k][i] = factor;
            for (size_type j=i+1; j<rows(); j++)
              A[k][j] -= factor*A[i][j];
            func(factor, k, i);
          }
        }
      }
    
      template<typename MAT>
      template <class V>
      inline void DenseMatrix<MAT>::solve(V& x, const V& b) const
      {
        // never mind those ifs, because they get optimized away
        if (rows()!=cols())
          DUNE_THROW(FMatrixError, "Can't solve for a " << rows() << "x" << cols() << " matrix!");
    
        if (rows()==1) {
    
    #ifdef DUNE_FMatrix_WITH_CHECKING
          if (fvmeta::absreal((*this)[0][0])<FMatrixPrecision<>::absolute_limit())
            DUNE_THROW(FMatrixError,"matrix is singular");
    #endif
          x[0] = b[0]/(*this)[0][0];
    
        }
        else if (rows()==2) {
    
          field_type detinv = (*this)[0][0]*(*this)[1][1]-(*this)[0][1]*(*this)[1][0];
    #ifdef DUNE_FMatrix_WITH_CHECKING
          if (fvmeta::absreal(detinv)<FMatrixPrecision<>::absolute_limit())
            DUNE_THROW(FMatrixError,"matrix is singular");
    #endif
          detinv = 1.0/detinv;
    
          x[0] = detinv*((*this)[1][1]*b[0]-(*this)[0][1]*b[1]);
          x[1] = detinv*((*this)[0][0]*b[1]-(*this)[1][0]*b[0]);
    
        }
        else if (rows()==3) {
    
          field_type d = determinant();
    #ifdef DUNE_FMatrix_WITH_CHECKING
          if (fvmeta::absreal(d)<FMatrixPrecision<>::absolute_limit())
            DUNE_THROW(FMatrixError,"matrix is singular");
    #endif
    
          x[0] = (b[0]*(*this)[1][1]*(*this)[2][2] - b[0]*(*this)[2][1]*(*this)[1][2]
                  - b[1] *(*this)[0][1]*(*this)[2][2] + b[1]*(*this)[2][1]*(*this)[0][2]
                  + b[2] *(*this)[0][1]*(*this)[1][2] - b[2]*(*this)[1][1]*(*this)[0][2]) / d;
    
          x[1] = ((*this)[0][0]*b[1]*(*this)[2][2] - (*this)[0][0]*b[2]*(*this)[1][2]
                  - (*this)[1][0] *b[0]*(*this)[2][2] + (*this)[1][0]*b[2]*(*this)[0][2]
                  + (*this)[2][0] *b[0]*(*this)[1][2] - (*this)[2][0]*b[1]*(*this)[0][2]) / d;
    
          x[2] = ((*this)[0][0]*(*this)[1][1]*b[2] - (*this)[0][0]*(*this)[2][1]*b[1]
                  - (*this)[1][0] *(*this)[0][1]*b[2] + (*this)[1][0]*(*this)[2][1]*b[0]
                  + (*this)[2][0] *(*this)[0][1]*b[1] - (*this)[2][0]*(*this)[1][1]*b[0]) / d;
    
        }
        else {
    
          V& rhs = x; // use x to store rhs
          rhs = b; // copy data
          Elim<V> elim(rhs);
          MAT A(asImp());
    
          luDecomposition(A, elim);
    
          // backsolve
    
    Christian Engwer's avatar
    Christian Engwer committed
          for(int i=rows()-1; i>=0; i--) {
    
            for (size_type j=i+1; j<rows(); j++)
              rhs[i] -= A[i][j]*x[j];
            x[i] = rhs[i]/A[i][i];
          }
        }
      }
    
      template<typename MAT>
      inline void DenseMatrix<MAT>::invert()
      {
        // never mind those ifs, because they get optimized away
        if (rows()!=cols())
          DUNE_THROW(FMatrixError, "Can't invert a " << rows() << "x" << cols() << " matrix!");
    
        if (rows()==1) {
    
    #ifdef DUNE_FMatrix_WITH_CHECKING
          if (fvmeta::absreal((*this)[0][0])<FMatrixPrecision<>::absolute_limit())
            DUNE_THROW(FMatrixError,"matrix is singular");
    #endif
          (*this)[0][0] = 1.0/(*this)[0][0];
    
        }
        else if (rows()==2) {
    
          field_type detinv = (*this)[0][0]*(*this)[1][1]-(*this)[0][1]*(*this)[1][0];
    #ifdef DUNE_FMatrix_WITH_CHECKING
          if (fvmeta::absreal(detinv)<FMatrixPrecision<>::absolute_limit())
            DUNE_THROW(FMatrixError,"matrix is singular");
    #endif
          detinv = 1.0/detinv;
    
          field_type temp=(*this)[0][0];
          (*this)[0][0] =  (*this)[1][1]*detinv;
          (*this)[0][1] = -(*this)[0][1]*detinv;
          (*this)[1][0] = -(*this)[1][0]*detinv;
          (*this)[1][1] =  temp*detinv;
    
        }
        else {
    
          MAT A(asImp());
          std::vector<size_type> pivot(rows());
          luDecomposition(A, ElimPivot(pivot));
          DenseMatrix<MAT>& L=A;
          DenseMatrix<MAT>& U=A;
    
          // initialize inverse
          *this=field_type();
    
          for(size_type i=0; i<rows(); ++i)
            (*this)[i][i]=1;
    
          // L Y = I; multiple right hand sides
          for (size_type i=0; i<rows(); i++)
            for (size_type j=0; j<i; j++)
              for (size_type k=0; k<rows(); k++)
                (*this)[i][k] -= L[i][j]*(*this)[j][k];
    
          // U A^{-1} = Y
          for (size_type i=rows(); i>0;) {
            --i;
            for (size_type k=0; k<rows(); k++) {
              for (size_type j=i+1; j<rows(); j++)
                (*this)[i][k] -= U[i][j]*(*this)[j][k];
              (*this)[i][k] /= U[i][i];
            }
          }
    
          for(size_type i=rows(); i>0; ) {
            --i;
            if(i!=pivot[i])
              for(size_type j=0; j<rows(); ++j)
                std::swap((*this)[j][pivot[i]], (*this)[j][i]);
          }
        }
      }
    
      // implementation of the determinant
      template<typename MAT>
      inline typename DenseMatrix<MAT>::field_type
      DenseMatrix<MAT>::determinant() const
      {
        // never mind those ifs, because they get optimized away
        if (rows()!=cols())
          DUNE_THROW(FMatrixError, "There is no determinant for a " << rows() << "x" << cols() << " matrix!");
    
        if (rows()==1)
          return (*this)[0][0];
    
        if (rows()==2)
          return (*this)[0][0]*(*this)[1][1] - (*this)[0][1]*(*this)[1][0];
    
        if (rows()==3) {
          // code generated by maple
          field_type t4  = (*this)[0][0] * (*this)[1][1];
          field_type t6  = (*this)[0][0] * (*this)[1][2];
          field_type t8  = (*this)[0][1] * (*this)[1][0];
          field_type t10 = (*this)[0][2] * (*this)[1][0];
          field_type t12 = (*this)[0][1] * (*this)[2][0];
          field_type t14 = (*this)[0][2] * (*this)[2][0];
    
          return (t4*(*this)[2][2]-t6*(*this)[2][1]-t8*(*this)[2][2]+
                  t10*(*this)[2][1]+t12*(*this)[1][2]-t14*(*this)[1][1]);
    
        }
    
        MAT A(asImp());
        field_type det;
        try
        {
          luDecomposition(A, ElimDet(det));
        }
        catch (FMatrixError&)
        {
          return 0;
        }
        for (size_type i = 0; i < rows(); ++i)
          det *= A[i][i];
        return det;
      }
    
    #endif // DOXYGEN
    
      namespace DenseMatrixHelp {
    #if 0
        //! invert scalar without changing the original matrix
        template <typename K>
        static inline K invertMatrix (const FieldMatrix<K,1,1> &matrix, FieldMatrix<K,1,1> &inverse)
        {
          inverse[0][0] = 1.0/matrix[0][0];
          return matrix[0][0];
        }
    
        //! invert scalar without changing the original matrix
        template <typename K>
        static inline K invertMatrix_retTransposed (const FieldMatrix<K,1,1> &matrix, FieldMatrix<K,1,1> &inverse)
        {
          return invertMatrix(matrix,inverse);
        }
    
    
        //! invert 2x2 Matrix without changing the original matrix
        template <typename K>
        static inline K invertMatrix (const FieldMatrix<K,2,2> &matrix, FieldMatrix<K,2,2> &inverse)
        {
          // code generated by maple
          field_type det = (matrix[0][0]*matrix[1][1] - matrix[0][1]*matrix[1][0]);
          field_type det_1 = 1.0/det;
          inverse[0][0] =   matrix[1][1] * det_1;
          inverse[0][1] = - matrix[0][1] * det_1;
          inverse[1][0] = - matrix[1][0] * det_1;
          inverse[1][1] =   matrix[0][0] * det_1;
          return det;
        }
    
        //! invert 2x2 Matrix without changing the original matrix
        //! return transposed matrix
        template <typename K>
        static inline K invertMatrix_retTransposed (const FieldMatrix<K,2,2> &matrix, FieldMatrix<K,2,2> &inverse)
        {
          // code generated by maple
          field_type det = (matrix[0][0]*matrix[1][1] - matrix[0][1]*matrix[1][0]);
          field_type det_1 = 1.0/det;
          inverse[0][0] =   matrix[1][1] * det_1;
          inverse[1][0] = - matrix[0][1] * det_1;
          inverse[0][1] = - matrix[1][0] * det_1;
          inverse[1][1] =   matrix[0][0] * det_1;
          return det;
        }
    
        //! invert 3x3 Matrix without changing the original matrix
        template <typename K>
        static inline K invertMatrix (const FieldMatrix<K,3,3> &matrix, FieldMatrix<K,3,3> &inverse)
        {
          // code generated by maple
          field_type t4  = matrix[0][0] * matrix[1][1];
          field_type t6  = matrix[0][0] * matrix[1][2];
          field_type t8  = matrix[0][1] * matrix[1][0];
          field_type t10 = matrix[0][2] * matrix[1][0];
          field_type t12 = matrix[0][1] * matrix[2][0];
          field_type t14 = matrix[0][2] * matrix[2][0];
    
          field_type det = (t4*matrix[2][2]-t6*matrix[2][1]-t8*matrix[2][2]+
                            t10*matrix[2][1]+t12*matrix[1][2]-t14*matrix[1][1]);
          field_type t17 = 1.0/det;