Newer
Older
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
// $Id: fmatrix.hh 6128 2010-09-08 13:50:00Z christi $
#ifndef DUNE_DENSEMATRIX_HH
#define DUNE_DENSEMATRIX_HH
#include <cmath>
#include <cstddef>
#include <iostream>
#include <vector>
#include <dune/common/misc.hh>
#include <dune/common/exceptions.hh>
#include <dune/common/fvector.hh>
#include <dune/common/precision.hh>
#include <dune/common/static_assert.hh>
#include <dune/common/classname.hh>
namespace Dune
{
template<typename M> class DenseMatrix;
template<typename M>
struct FieldTraits< DenseMatrix<M> >
{
typedef const typename FieldTraits< typename DenseMatVecTraits<M>::value_type >::field_type field_type;
typedef const typename FieldTraits< typename DenseMatVecTraits<M>::value_type >::real_type real_type;
};
/*
work around a problem of FieldMatrix/FieldVector,
there is no unique way to obtain the size of a class
*/
template<class K, int N, int M> class FieldMatrix;
template<class K, int N> class FieldVector;
namespace {
template<class V>
struct VectorSize
{
static typename V::size_type size(const V & v) { return v.size(); }
};
template<class K, int N>
struct VectorSize< const FieldVector<K,N> >
{
typedef FieldVector<K,N> V;
static typename V::size_type size(const V & v) { return N; }
};
/**
@addtogroup DenseMatVec
@{
*/
/*! \file
\brief This file implements a matrix constructed from a given type
representing a field and compile-time given number of rows and columns.
*/
/**
\brief you have to specialize this function for any type T that should be assignable to a DenseMatrix
\tparam M Type of the matrix implementation class implementing the dense matrix
*/
template<typename M, typename T>
void istl_assign_to_fmatrix(DenseMatrix<M>& f, const T& t)
{
DUNE_THROW(NotImplemented, "You need to specialise the method istl_assign_to_fmatrix(DenseMatrix<M>& f, const T& t) "
<< "(with M being " << className<M>() << ") "
<< "for T == " << className<T>() << "!");
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
}
namespace
{
template<bool b>
struct DenseMatrixAssigner
{
template<typename M, typename T>
static void assign(DenseMatrix<M>& fm, const T& t)
{
istl_assign_to_fmatrix(fm, t);
}
};
template<>
struct DenseMatrixAssigner<true>
{
template<typename M, typename T>
static void assign(DenseMatrix<M>& fm, const T& t)
{
fm = static_cast<const typename DenseMatVecTraits<M>::value_type>(t);
}
};
}
/** @brief Error thrown if operations of a FieldMatrix fail. */
class FMatrixError : public Exception {};
/**
@brief A dense n x m matrix.
Matrices represent linear maps from a vector space V to a vector space W.
This class represents such a linear map by storing a two-dimensional
%array of numbers of a given field type K. The number of rows and
columns is given at compile time.
\tparam MAT type of the matrix implementation
*/
template<typename MAT>
class DenseMatrix
{
typedef DenseMatVecTraits<MAT> Traits;
MAT & asImp() { return static_cast<MAT&>(*this); }
const MAT & asImp() const { return static_cast<const MAT&>(*this); }
public:
//===== type definitions and constants
//! type of derived matrix class
typedef typename Traits::derived_type derived_type;
//! export the type representing the field
typedef typename Traits::value_type value_type;
//! export the type representing the field
typedef typename Traits::value_type field_type;
//! export the type representing the components
typedef typename Traits::value_type block_type;
//! The type used for the index access and size operation
typedef typename Traits::size_type size_type;
//! The type used to represent a row (must fulfill the Dune::DenseVector interface)
typedef typename Traits::row_type row_type;
Martin Nolte
committed
//! The type used to represent a reference to a row (usually row_type &)
typedef typename Traits::row_reference row_reference;
//! The type used to represent a reference to a constant row (usually const row_type &)
typedef typename Traits::const_row_reference const_row_reference;
//! We are at the leaf of the block recursion
enum {
//! The number of block levels we contain. This is 1.
blocklevel = 1
};
//===== access to components
//! random access
Martin Nolte
committed
row_reference operator[] ( size_type i )
{
return asImp().mat_access(i);
}
Martin Nolte
committed
const_row_reference operator[] ( size_type i ) const
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
{
return asImp().mat_access(i);
}
//! size method (number of rows)
size_type size() const
{
return rows();
}
//===== iterator interface to rows of the matrix
//! Iterator class for sequential access
typedef DenseIterator<DenseMatrix,row_type> Iterator;
//! typedef for stl compliant access
typedef Iterator iterator;
//! rename the iterators for easier access
typedef Iterator RowIterator;
//! rename the iterators for easier access
typedef typename row_type::Iterator ColIterator;
//! begin iterator
Iterator begin ()
{
return Iterator(*this,0);
}
//! end iterator
Iterator end ()
{
return Iterator(*this,rows());
}
//! @returns an iterator that is positioned before
//! the end iterator of the vector, i.e. at the last entry.
Iterator beforeEnd ()
{
return Iterator(*this,rows()-1);
}
//! @returns an iterator that is positioned before
//! the first entry of the vector.
Iterator beforeBegin ()
{
return Iterator(*this,-1);
}
//! Iterator class for sequential access
typedef DenseIterator<const DenseMatrix,const row_type> ConstIterator;
//! typedef for stl compliant access
typedef ConstIterator const_iterator;
//! rename the iterators for easier access
typedef ConstIterator ConstRowIterator;
//! rename the iterators for easier access
typedef typename row_type::ConstIterator ConstColIterator;
//! begin iterator
ConstIterator begin () const
{
return ConstIterator(*this,0);
}
//! end iterator
ConstIterator end () const
{
return ConstIterator(*this,rows());
}
//! @returns an iterator that is positioned before
//! the end iterator of the vector. i.e. at the last element
ConstIterator beforeEnd () const
{
return ConstIterator(*this,rows()-1);
}
//! @returns an iterator that is positioned before
//! the first entry of the vector.
ConstIterator beforeBegin () const
{
return ConstIterator(*this,-1);
}
//===== assignment from scalar
DenseMatrix& operator= (const field_type& f)
{
for (size_type i=0; i<rows(); i++)
(*this)[i] = f;
return *this;
}
template<typename T>
DenseMatrix& operator= (const T& t)
{
DenseMatrixAssigner<Conversion<T,field_type>::exists>::assign(*this, t);
return *this;
}
//===== vector space arithmetic
//! vector space addition
template <class Other>
DenseMatrix& operator+= (const DenseMatrix<Other>& y)
{
for (size_type i=0; i<rows(); i++)
(*this)[i] += y[i];
return *this;
}
//! vector space subtraction
template <class Other>
DenseMatrix& operator-= (const DenseMatrix<Other>& y)
{
for (size_type i=0; i<rows(); i++)
(*this)[i] -= y[i];
return *this;
}
//! vector space multiplication with scalar
DenseMatrix& operator*= (const field_type& k)
{
for (size_type i=0; i<rows(); i++)
(*this)[i] *= k;
return *this;
}
//! vector space division by scalar
DenseMatrix& operator/= (const field_type& k)
{
for (size_type i=0; i<rows(); i++)
(*this)[i] /= k;
return *this;
}
//! vector space axpy operation (*this += k y)
template <class Other>
DenseMatrix &axpy (const field_type &k, const DenseMatrix<Other> &y )
{
for( size_type i = 0; i < rows(); ++i )
(*this)[ i ].axpy( k, y[ i ] );
return *this;
}
//! Binary matrix comparison
template <class Other>
bool operator== (const DenseMatrix<Other>& y) const
{
for (size_type i=0; i<rows(); i++)
if ((*this)[i]!=y[i])
return false;
return true;
}
template <class Other>
bool operator!= (const DenseMatrix<Other>& y) const
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
{
return !operator==(y);
}
//===== linear maps
//! y = A x
template<class X, class Y>
void mv (const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=M()) DUNE_THROW(FMatrixError,"Index out of range");
if (y.N()!=N()) DUNE_THROW(FMatrixError,"Index out of range");
#endif
for (size_type i=0; i<rows(); ++i)
{
y[i] = 0;
for (size_type j=0; j<cols(); j++)
y[i] += (*this)[i][j] * x[j];
}
}
//! y = A^T x
template< class X, class Y >
void mtv ( const X &x, Y &y ) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
//assert( &x != &y );
//This assert did not work for me. Compile error:
// comparison between distinct pointer types ‘const
// Dune::FieldVector<double, 3>*’ and ‘Dune::FieldVector<double, 2>*’ lacks a cast
if( x.N() != N() )
DUNE_THROW( FMatrixError, "Index out of range." );
if( y.N() != M() )
DUNE_THROW( FMatrixError, "Index out of range." );
#endif
for( size_type i = 0; i < cols(); ++i )
{
y[ i ] = 0;
for( size_type j = 0; j < rows(); ++j )
y[ i ] += (*this)[ j ][ i ] * x[ j ];
}
}
//! y += A x
template<class X, class Y>
void umv (const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=M())
DUNE_THROW(FMatrixError,"y += A x -- index out of range (sizes: x: " << x.N() << ", y: " << y.N() << ", A: " << this->N() << " x " << this->M() << ")" << std::endl);
if (y.N()!=N())
DUNE_THROW(FMatrixError,"y += A x -- index out of range (sizes: x: " << x.N() << ", y: " << y.N() << ", A: " << this->N() << " x " << this->M() << ")" << std::endl);
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
#endif
for (size_type i=0; i<rows(); i++)
for (size_type j=0; j<cols(); j++)
y[i] += (*this)[i][j] * x[j];
}
//! y += A^T x
template<class X, class Y>
void umtv (const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
if (y.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
#endif
for (size_type i=0; i<rows(); i++)
for (size_type j=0; j<cols(); j++)
y[j] += (*this)[i][j]*x[i];
}
//! y += A^H x
template<class X, class Y>
void umhv (const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
if (y.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
#endif
for (size_type i=0; i<rows(); i++)
for (size_type j=0; j<cols(); j++)
y[j] += conjugateComplex((*this)[i][j])*x[i];
}
//! y -= A x
template<class X, class Y>
void mmv (const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
if (y.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
#endif
for (size_type i=0; i<rows(); i++)
for (size_type j=0; j<cols(); j++)
y[i] -= (*this)[i][j] * x[j];
}
//! y -= A^T x
template<class X, class Y>
void mmtv (const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
if (y.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
#endif
for (size_type i=0; i<rows(); i++)
for (size_type j=0; j<cols(); j++)
y[j] -= (*this)[i][j]*x[i];
}
//! y -= A^H x
template<class X, class Y>
void mmhv (const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
if (y.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
#endif
for (size_type i=0; i<rows(); i++)
for (size_type j=0; j<cols(); j++)
y[j] -= conjugateComplex((*this)[i][j])*x[i];
}
//! y += alpha A x
template<class X, class Y>
void usmv (const field_type& alpha, const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
if (y.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
#endif
for (size_type i=0; i<rows(); i++)
for (size_type j=0; j<cols(); j++)
y[i] += alpha * (*this)[i][j] * x[j];
}
//! y += alpha A^T x
template<class X, class Y>
void usmtv (const field_type& alpha, const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
if (y.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
#endif
for (size_type i=0; i<rows(); i++)
for (size_type j=0; j<cols(); j++)
y[j] += alpha*(*this)[i][j]*x[i];
}
//! y += alpha A^H x
template<class X, class Y>
void usmhv (const field_type& alpha, const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
if (y.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
#endif
for (size_type i=0; i<rows(); i++)
for (size_type j=0; j<cols(); j++)
y[j] += alpha*conjugateComplex((*this)[i][j])*x[i];
}
//===== norms
//! frobenius norm: sqrt(sum over squared values of entries)
typename FieldTraits<value_type>::real_type frobenius_norm () const
{
typename FieldTraits<value_type>::real_type sum=(0.0);
for (size_type i=0; i<rows(); ++i) sum += (*this)[i].two_norm2();
return fvmeta::sqrt(sum);
}
//! square of frobenius norm, need for block recursion
typename FieldTraits<value_type>::real_type frobenius_norm2 () const
{
typename FieldTraits<value_type>::real_type sum=(0.0);
for (size_type i=0; i<rows(); ++i) sum += (*this)[i].two_norm2();
return sum;
}
//! infinity norm (row sum norm, how to generalize for blocks?)
typename FieldTraits<value_type>::real_type infinity_norm () const
{
typename remove_const< typename FieldTraits<value_type>::real_type >::type max=(0.0);
for (size_type i=0; i<rows(); ++i) max = std::max(max,(*this)[i].one_norm());
return max;
}
//! simplified infinity norm (uses Manhattan norm for complex values)
typename FieldTraits<value_type>::real_type infinity_norm_real () const
{
typename FieldTraits<value_type>::real_type max(0.0);
for (size_type i=0; i<rows(); ++i) max = std::max(max,(*this)[i].one_norm_real());
return max;
}
//===== solve
/** \brief Solve system A x = b
*
* \exception FMatrixError if the matrix is singular
*/
template <class V>
void solve (V& x, const V& b) const;
/** \brief Compute inverse
*
* \exception FMatrixError if the matrix is singular
*/
void invert();
//! calculates the determinant of this matrix
field_type determinant () const;
//! Multiplies M from the left to this matrix
template<typename M2>
MAT& leftmultiply (const DenseMatrix<M2>& M)
{
assert(M.rows() == M.cols() && M.rows() == rows());
MAT C(asImp());
for (size_type i=0; i<rows(); i++)
for (size_type j=0; j<cols(); j++) {
(*this)[i][j] = 0;
for (size_type k=0; k<rows(); k++)
(*this)[i][j] += M[i][k]*C[k][j];
}
return asImp();
}
//! Multiplies M from the right to this matrix
template<typename M2>
MAT& rightmultiply (const DenseMatrix<M2>& M)
{
assert(M.rows() == M.cols() && M.cols() == cols());
MAT C(asImp());
for (size_type i=0; i<rows(); i++)
for (size_type j=0; j<cols(); j++) {
(*this)[i][j] = 0;
for (size_type k=0; k<cols(); k++)
(*this)[i][j] += C[i][k]*M[k][j];
}
return asImp();
}
#if 0
//! Multiplies M from the left to this matrix, this matrix is not modified
template<int l>
DenseMatrix<K,l,cols> leftmultiplyany (const FieldMatrix<K,l,rows>& M) const
{
FieldMatrix<K,l,cols> C;
for (size_type i=0; i<l; i++) {
for (size_type j=0; j<cols(); j++) {
C[i][j] = 0;
for (size_type k=0; k<rows(); k++)
C[i][j] += M[i][k]*(*this)[k][j];
}
}
return C;
}
//! Multiplies M from the right to this matrix, this matrix is not modified
template<int l>
FieldMatrix<K,rows,l> rightmultiplyany (const FieldMatrix<K,cols,l>& M) const
{
FieldMatrix<K,rows,l> C;
for (size_type i=0; i<rows(); i++) {
for (size_type j=0; j<l; j++) {
C[i][j] = 0;
for (size_type k=0; k<cols(); k++)
C[i][j] += (*this)[i][k]*M[k][j];
}
}
return C;
}
#endif
//===== sizes
//! number of rows
size_type N () const
{
return rows();
}
//! number of columns
size_type M () const
{
return cols();
}
//! number of rows
size_type rows() const
{
return asImp().mat_rows();
}
//! number of columns
size_type cols() const
{
return asImp().mat_cols();
}
//===== query
//! return true when (i,j) is in pattern
bool exists (size_type i, size_type j) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (i<0 || i>=rows()) DUNE_THROW(FMatrixError,"row index out of range");
if (j<0 || j>=cols()) DUNE_THROW(FMatrixError,"column index out of range");
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
#endif
return true;
}
private:
#ifndef DOXYGEN
struct ElimPivot
{
ElimPivot(std::vector<size_type> & pivot);
void swap(int i, int j);
template<typename T>
void operator()(const T&, int k, int i)
{}
std::vector<size_type> & pivot_;
};
template<typename V>
struct Elim
{
Elim(V& rhs);
void swap(int i, int j);
void operator()(const typename V::field_type& factor, int k, int i);
V* rhs_;
};
struct ElimDet
{
ElimDet(field_type& sign) : sign_(sign)
{ sign_ = 1; }
void swap(int i, int j)
{ sign_ *= -1; }
void operator()(const field_type&, int k, int i)
{}
field_type& sign_;
};
#endif // DOXYGEN
template<class Func>
void luDecomposition(DenseMatrix<MAT>& A, Func func) const;
};
#ifndef DOXYGEN
template<typename MAT>
DenseMatrix<MAT>::ElimPivot::ElimPivot(std::vector<size_type> & pivot)
: pivot_(pivot)
{
typedef typename std::vector<size_type>::size_type size_type;
for(size_type i=0; i < pivot_.size(); ++i) pivot_[i]=i;
}
template<typename MAT>
void DenseMatrix<MAT>::ElimPivot::swap(int i, int j)
{
pivot_[i]=j;
}
template<typename MAT>
template<typename V>
DenseMatrix<MAT>::Elim<V>::Elim(V& rhs)
: rhs_(&rhs)
{}
template<typename MAT>
template<typename V>
void DenseMatrix<MAT>::Elim<V>::swap(int i, int j)
{
std::swap((*rhs_)[i], (*rhs_)[j]);
}
template<typename MAT>
template<typename V>
void DenseMatrix<MAT>::
Elim<V>::operator()(const typename V::field_type& factor, int k, int i)
{
(*rhs_)[k] -= factor*(*rhs_)[i];
}
template<typename MAT>
template<typename Func>
inline void DenseMatrix<MAT>::luDecomposition(DenseMatrix<MAT>& A, Func func) const
{
typedef typename FieldTraits<value_type>::real_type
real_type;
real_type norm = A.infinity_norm_real(); // for relative thresholds
real_type pivthres = std::max( FMatrixPrecision< real_type >::absolute_limit(), norm * FMatrixPrecision< real_type >::pivoting_limit() );
real_type singthres = std::max( FMatrixPrecision< real_type >::absolute_limit(), norm * FMatrixPrecision< real_type >::singular_limit() );
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
// LU decomposition of A in A
for (size_type i=0; i<rows(); i++) // loop over all rows
{
typename FieldTraits<value_type>::real_type pivmax=fvmeta::absreal(A[i][i]);
// pivoting ?
if (pivmax<pivthres)
{
// compute maximum of column
size_type imax=i;
typename FieldTraits<value_type>::real_type abs(0.0);
for (size_type k=i+1; k<rows(); k++)
if ((abs=fvmeta::absreal(A[k][i]))>pivmax)
{
pivmax = abs; imax = k;
}
// swap rows
if (imax!=i) {
for (size_type j=0; j<rows(); j++)
std::swap(A[i][j],A[imax][j]);
func.swap(i, imax); // swap the pivot or rhs
}
}
// singular ?
if (pivmax<singthres)
DUNE_THROW(FMatrixError,"matrix is singular");
// eliminate
for (size_type k=i+1; k<rows(); k++)
{
field_type factor = A[k][i]/A[i][i];
A[k][i] = factor;
for (size_type j=i+1; j<rows(); j++)
A[k][j] -= factor*A[i][j];
func(factor, k, i);
}
}
}
template<typename MAT>
template <class V>
inline void DenseMatrix<MAT>::solve(V& x, const V& b) const
{
// never mind those ifs, because they get optimized away
if (rows()!=cols())
DUNE_THROW(FMatrixError, "Can't solve for a " << rows() << "x" << cols() << " matrix!");
if (rows()==1) {
#ifdef DUNE_FMatrix_WITH_CHECKING
if (fvmeta::absreal((*this)[0][0])<FMatrixPrecision<>::absolute_limit())
DUNE_THROW(FMatrixError,"matrix is singular");
#endif
x[0] = b[0]/(*this)[0][0];
}
else if (rows()==2) {
field_type detinv = (*this)[0][0]*(*this)[1][1]-(*this)[0][1]*(*this)[1][0];
#ifdef DUNE_FMatrix_WITH_CHECKING
if (fvmeta::absreal(detinv)<FMatrixPrecision<>::absolute_limit())
DUNE_THROW(FMatrixError,"matrix is singular");
#endif
detinv = 1.0/detinv;
x[0] = detinv*((*this)[1][1]*b[0]-(*this)[0][1]*b[1]);
x[1] = detinv*((*this)[0][0]*b[1]-(*this)[1][0]*b[0]);
}
else if (rows()==3) {
field_type d = determinant();
#ifdef DUNE_FMatrix_WITH_CHECKING
if (fvmeta::absreal(d)<FMatrixPrecision<>::absolute_limit())
DUNE_THROW(FMatrixError,"matrix is singular");
#endif
x[0] = (b[0]*(*this)[1][1]*(*this)[2][2] - b[0]*(*this)[2][1]*(*this)[1][2]
- b[1] *(*this)[0][1]*(*this)[2][2] + b[1]*(*this)[2][1]*(*this)[0][2]
+ b[2] *(*this)[0][1]*(*this)[1][2] - b[2]*(*this)[1][1]*(*this)[0][2]) / d;
x[1] = ((*this)[0][0]*b[1]*(*this)[2][2] - (*this)[0][0]*b[2]*(*this)[1][2]
- (*this)[1][0] *b[0]*(*this)[2][2] + (*this)[1][0]*b[2]*(*this)[0][2]
+ (*this)[2][0] *b[0]*(*this)[1][2] - (*this)[2][0]*b[1]*(*this)[0][2]) / d;
x[2] = ((*this)[0][0]*(*this)[1][1]*b[2] - (*this)[0][0]*(*this)[2][1]*b[1]
- (*this)[1][0] *(*this)[0][1]*b[2] + (*this)[1][0]*(*this)[2][1]*b[0]
+ (*this)[2][0] *(*this)[0][1]*b[1] - (*this)[2][0]*(*this)[1][1]*b[0]) / d;
}
else {
V& rhs = x; // use x to store rhs
rhs = b; // copy data
Elim<V> elim(rhs);
MAT A(asImp());
luDecomposition(A, elim);
// backsolve
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
for (size_type j=i+1; j<rows(); j++)
rhs[i] -= A[i][j]*x[j];
x[i] = rhs[i]/A[i][i];
}
}
}
template<typename MAT>
inline void DenseMatrix<MAT>::invert()
{
// never mind those ifs, because they get optimized away
if (rows()!=cols())
DUNE_THROW(FMatrixError, "Can't invert a " << rows() << "x" << cols() << " matrix!");
if (rows()==1) {
#ifdef DUNE_FMatrix_WITH_CHECKING
if (fvmeta::absreal((*this)[0][0])<FMatrixPrecision<>::absolute_limit())
DUNE_THROW(FMatrixError,"matrix is singular");
#endif
(*this)[0][0] = 1.0/(*this)[0][0];
}
else if (rows()==2) {
field_type detinv = (*this)[0][0]*(*this)[1][1]-(*this)[0][1]*(*this)[1][0];
#ifdef DUNE_FMatrix_WITH_CHECKING
if (fvmeta::absreal(detinv)<FMatrixPrecision<>::absolute_limit())
DUNE_THROW(FMatrixError,"matrix is singular");
#endif
detinv = 1.0/detinv;
field_type temp=(*this)[0][0];
(*this)[0][0] = (*this)[1][1]*detinv;
(*this)[0][1] = -(*this)[0][1]*detinv;
(*this)[1][0] = -(*this)[1][0]*detinv;
(*this)[1][1] = temp*detinv;
}
else {
MAT A(asImp());
std::vector<size_type> pivot(rows());
luDecomposition(A, ElimPivot(pivot));
DenseMatrix<MAT>& L=A;
DenseMatrix<MAT>& U=A;
// initialize inverse
*this=field_type();
for(size_type i=0; i<rows(); ++i)
(*this)[i][i]=1;
// L Y = I; multiple right hand sides
for (size_type i=0; i<rows(); i++)
for (size_type j=0; j<i; j++)
for (size_type k=0; k<rows(); k++)
(*this)[i][k] -= L[i][j]*(*this)[j][k];
// U A^{-1} = Y
for (size_type i=rows(); i>0;) {
--i;
for (size_type k=0; k<rows(); k++) {
for (size_type j=i+1; j<rows(); j++)
(*this)[i][k] -= U[i][j]*(*this)[j][k];
(*this)[i][k] /= U[i][i];
}
}
for(size_type i=rows(); i>0; ) {
--i;
if(i!=pivot[i])
for(size_type j=0; j<rows(); ++j)
std::swap((*this)[j][pivot[i]], (*this)[j][i]);
}
}
}
// implementation of the determinant
template<typename MAT>
inline typename DenseMatrix<MAT>::field_type
DenseMatrix<MAT>::determinant() const
{
// never mind those ifs, because they get optimized away
if (rows()!=cols())
DUNE_THROW(FMatrixError, "There is no determinant for a " << rows() << "x" << cols() << " matrix!");
if (rows()==1)
return (*this)[0][0];
if (rows()==2)
return (*this)[0][0]*(*this)[1][1] - (*this)[0][1]*(*this)[1][0];
if (rows()==3) {
// code generated by maple
field_type t4 = (*this)[0][0] * (*this)[1][1];
field_type t6 = (*this)[0][0] * (*this)[1][2];
field_type t8 = (*this)[0][1] * (*this)[1][0];
field_type t10 = (*this)[0][2] * (*this)[1][0];
field_type t12 = (*this)[0][1] * (*this)[2][0];
field_type t14 = (*this)[0][2] * (*this)[2][0];
return (t4*(*this)[2][2]-t6*(*this)[2][1]-t8*(*this)[2][2]+
t10*(*this)[2][1]+t12*(*this)[1][2]-t14*(*this)[1][1]);
}
MAT A(asImp());
field_type det;
try
{
luDecomposition(A, ElimDet(det));
}
catch (FMatrixError&)
{
return 0;
}
for (size_type i = 0; i < rows(); ++i)
det *= A[i][i];
return det;
}
#endif // DOXYGEN
namespace DenseMatrixHelp {
#if 0
//! invert scalar without changing the original matrix
template <typename K>
static inline K invertMatrix (const FieldMatrix<K,1,1> &matrix, FieldMatrix<K,1,1> &inverse)
{
inverse[0][0] = 1.0/matrix[0][0];
return matrix[0][0];
}
//! invert scalar without changing the original matrix
template <typename K>
static inline K invertMatrix_retTransposed (const FieldMatrix<K,1,1> &matrix, FieldMatrix<K,1,1> &inverse)
{
return invertMatrix(matrix,inverse);
}
//! invert 2x2 Matrix without changing the original matrix
template <typename K>
static inline K invertMatrix (const FieldMatrix<K,2,2> &matrix, FieldMatrix<K,2,2> &inverse)
{
// code generated by maple
field_type det = (matrix[0][0]*matrix[1][1] - matrix[0][1]*matrix[1][0]);
field_type det_1 = 1.0/det;
inverse[0][0] = matrix[1][1] * det_1;
inverse[0][1] = - matrix[0][1] * det_1;
inverse[1][0] = - matrix[1][0] * det_1;
inverse[1][1] = matrix[0][0] * det_1;
return det;
}
//! invert 2x2 Matrix without changing the original matrix
//! return transposed matrix
template <typename K>
static inline K invertMatrix_retTransposed (const FieldMatrix<K,2,2> &matrix, FieldMatrix<K,2,2> &inverse)
{
// code generated by maple
field_type det = (matrix[0][0]*matrix[1][1] - matrix[0][1]*matrix[1][0]);