Skip to content
Snippets Groups Projects
fmatrix.hh 33.1 KiB
Newer Older
  • Learn to ignore specific revisions
  • Oliver Sander's avatar
    Oliver Sander committed
    // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
    // vi: set et ts=4 sw=2 sts=2:
    
    Oliver Sander's avatar
    Oliver Sander committed
    #ifndef DUNE_FMATRIX_HH
    #define DUNE_FMATRIX_HH
    
    #include <math.h>
    #include <complex>
    #include <iostream>
    
    #include <dune/istl/istlexception.hh>
    #include <dune/istl/allocator.hh>
    #include <dune/common/fvector.hh>
    #include <dune/istl/precision.hh>
    
    /*! \file
    
       \brief  This file implements a matrix constructed from a given type
       representing a field and compile-time given number of rows and columns.
     */
    
    namespace Dune {
    
      /**
    
    Oliver Sander's avatar
    Oliver Sander committed
    26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
                  @ingroup Common
                  @{
       */
    
      template<class K, int n, int m> class FieldMatrix;
    
      // template meta program for assignment from scalar
      template<int I>
      struct fmmeta_assignscalar {
        template<class T, class K>
        static void assignscalar (T* x, const K& k)
        {
          fmmeta_assignscalar<I-1>::assignscalar(x,k);
          x[I] = k;
        }
      };
      template<>
      struct fmmeta_assignscalar<0> {
        template<class T, class K>
        static void assignscalar (T* x, const K& k)
        {
          x[0] = k;
        }
      };
    
      // template meta program for operator+=
      template<int I>
      struct fmmeta_plusequal {
        template<class T>
        static void plusequal (T& x, const T& y)
        {
          x[I] += y[I];
          fmmeta_plusequal<I-1>::plusequal(x,y);
        }
      };
      template<>
      struct fmmeta_plusequal<0> {
        template<class T>
        static void plusequal (T& x, const T& y)
        {
          x[0] += y[0];
        }
      };
    
      // template meta program for operator-=
      template<int I>
      struct fmmeta_minusequal {
        template<class T>
        static void minusequal (T& x, const T& y)
        {
          x[I] -= y[I];
          fmmeta_minusequal<I-1>::minusequal(x,y);
        }
      };
      template<>
      struct fmmeta_minusequal<0> {
        template<class T>
        static void minusequal (T& x, const T& y)
        {
          x[0] -= y[0];
        }
      };
    
      // template meta program for operator*=
      template<int I>
      struct fmmeta_multequal {
        template<class T, class K>
        static void multequal (T& x, const K& k)
        {
          x[I] *= k;
          fmmeta_multequal<I-1>::multequal(x,k);
        }
      };
      template<>
      struct fmmeta_multequal<0> {
        template<class T, class K>
        static void multequal (T& x, const K& k)
        {
          x[0] *= k;
        }
      };
    
      // template meta program for operator/=
      template<int I>
      struct fmmeta_divequal {
        template<class T, class K>
        static void divequal (T& x, const K& k)
        {
          x[I] /= k;
          fmmeta_divequal<I-1>::divequal(x,k);
        }
      };
      template<>
      struct fmmeta_divequal<0> {
        template<class T, class K>
        static void divequal (T& x, const K& k)
        {
          x[0] /= k;
        }
      };
    
      // template meta program for dot
      template<int I>
      struct fmmeta_dot {
        template<class X, class Y, class K>
        static K dot (const X& x, const Y& y)
        {
          return x[I]*y[I] + fmmeta_dot<I-1>::template dot<X,Y,K>(x,y);
        }
      };
      template<>
      struct fmmeta_dot<0> {
        template<class X, class Y, class K>
        static K dot (const X& x, const Y& y)
        {
          return x[0]*y[0];
        }
      };
    
      // template meta program for umv(x,y)
      template<int I>
      struct fmmeta_umv {
        template<class Mat, class X, class Y, int c>
        static void umv (const Mat& A, const X& x, Y& y)
        {
          typedef typename Mat::row_type R;
          typedef typename Mat::field_type K;
          y[I] += fmmeta_dot<c>::template dot<R,X,K>(A[I],x);
          fmmeta_umv<I-1>::template umv<Mat,X,Y,c>(A,x,y);
        }
      };
      template<>
      struct fmmeta_umv<0> {
        template<class Mat, class X, class Y, int c>
        static void umv (const Mat& A, const X& x, Y& y)
        {
          typedef typename Mat::row_type R;
          typedef typename Mat::field_type K;
          y[0] += fmmeta_dot<c>::template dot<R,X,K>(A[0],x);
        }
      };
    
      // template meta program for mmv(x,y)
      template<int I>
      struct fmmeta_mmv {
        template<class Mat, class X, class Y, int c>
        static void mmv (const Mat& A, const X& x, Y& y)
        {
          typedef typename Mat::row_type R;
          typedef typename Mat::field_type K;
          y[I] -= fmmeta_dot<c>::template dot<R,X,K>(A[I],x);
          fmmeta_mmv<I-1>::template mmv<Mat,X,Y,c>(A,x,y);
        }
      };
      template<>
      struct fmmeta_mmv<0> {
        template<class Mat, class X, class Y, int c>
        static void mmv (const Mat& A, const X& x, Y& y)
        {
          typedef typename Mat::row_type R;
          typedef typename Mat::field_type K;
          y[0] -= fmmeta_dot<c>::template dot<R,X,K>(A[0],x);
        }
      };
    
      template<class K, int n, int m, class X, class Y>
      inline void fm_mmv (const FieldMatrix<K,n,m>& A,  const X& x, Y& y)
      {
        for (int i=0; i<n; i++)
          for (int j=0; j<m; j++)
            y[i] -= A[i][j]*x[j];
      }
    
      template<class K>
      inline void fm_mmv (const FieldMatrix<K,1,1>& A, const FieldVector<K,1>& x, FieldVector<K,1>& y)
      {
        y[0] -= A[0][0]*x[0];
      }
    
      // template meta program for usmv(x,y)
      template<int I>
      struct fmmeta_usmv {
        template<class Mat, class K, class X, class Y, int c>
        static void usmv (const Mat& A, const K& alpha, const X& x, Y& y)
        {
          typedef typename Mat::row_type R;
          y[I] += alpha*fmmeta_dot<c>::template dot<R,X,K>(A[I],x);
          fmmeta_usmv<I-1>::template usmv<Mat,K,X,Y,c>(A,alpha,x,y);
        }
      };
      template<>
      struct fmmeta_usmv<0> {
        template<class Mat, class K,  class X, class Y, int c>
        static void usmv (const Mat& A, const K& alpha, const X& x, Y& y)
        {
          typedef typename Mat::row_type R;
          y[0] += alpha*fmmeta_dot<c>::template dot<R,X,K>(A[0],x);
        }
      };
    
      // conjugate komplex does nothing for non-complex types
      template<class K>
      inline K fm_ck (const K& k)
      {
        return k;
      }
    
      // conjugate komplex
      template<class K>
      inline std::complex<K> fm_ck (const std::complex<K>& c)
      {
        return std::complex<K>(c.real(),-c.imag());
      }
    
    
      //! solve small system
      template<class K, int n, class V>
      void fm_solve (const FieldMatrix<K,n,n>& Ain,  V& x, const V& b)
      {
        // make a copy of a to store factorization
        FieldMatrix<K,n,n> A(Ain);
    
        // Gaussian elimination with maximum column pivot
        double norm=A.infinity_norm_real();     // for relative thresholds
        double pivthres = std::max(ISTLPrecision<>::absolute_limit(),norm*ISTLPrecision<>::pivoting_limit());
        double singthres = std::max(ISTLPrecision<>::absolute_limit(),norm*ISTLPrecision<>::singular_limit());
        V& rhs = x;          // use x to store rhs
        rhs = b;             // copy data
    
        // elimination phase
        for (int i=0; i<n; i++)      // loop over all rows
        {
          double pivmax=fvmeta_absreal(A[i][i]);
    
          // pivoting ?
          if (pivmax<pivthres)
          {
            // compute maximum of row
            int imax=i; double abs;
            for (int k=i+1; k<n; k++)
              if ((abs=fvmeta_absreal(A[k][i]))>pivmax)
              {
                pivmax = abs; imax = k;
              }
            // swap rows
            if (imax!=i)
              for (int j=i; j<n; j++)
                std::swap(A[i][j],A[imax][j]);
          }
    
          // singular ?
          if (pivmax<singthres)
            DUNE_THROW(ISTLError,"matrix is singular");
    
          // eliminate
          for (int k=i+1; k<n; k++)
          {
            K factor = -A[k][i]/A[i][i];
            for (int j=i+1; j<n; j++)
              A[k][j] += factor*A[i][j];
            rhs[k] += factor*rhs[i];
          }
        }
    
        // backsolve
        for (int i=n-1; i>=0; i--)
        {
          for (int j=i+1; j<n; j++)
            rhs[i] -= A[i][j]*x[j];
          x[i] = rhs[i]/A[i][i];
        }
      }
    
      //! special case for 1x1 matrix, x and b may be identical
      template<class K, class V>
      inline void fm_solve (const FieldMatrix<K,1,1>& A,  V& x, const V& b)
      {
    #ifdef DUNE_ISTL_WITH_CHECKING
        if (fvmeta_absreal(A[0][0])<ISTLPrecision<>::absolute_limit())
          DUNE_THROW(ISTLError,"matrix is singular");
    #endif
        x[0] = b[0]/A[0][0];
      }
    
      //! special case for 2x2 matrix, x and b may be identical
      template<class K, class V>
      inline void fm_solve (const FieldMatrix<K,2,2>& A,  V& x, const V& b)
      {
    #ifdef DUNE_ISTL_WITH_CHECKING
        K detinv = A[0][0]*A[1][1]-A[0][1]*A[1][0];
        if (fvmeta_absreal(detinv)<ISTLPrecision<>::absolute_limit())
          DUNE_THROW(ISTLError,"matrix is singular");
        detinv = 1/detinv;
    #else
        K detinv = 1.0/(A[0][0]*A[1][1]-A[0][1]*A[1][0]);
    #endif
    
        K temp = b[0];
        x[0] = detinv*(A[1][1]*b[0]-A[0][1]*b[1]);
        x[1] = detinv*(A[0][0]*b[1]-A[1][0]*temp);
      }
    
    
    
      //! compute inverse
      template<class K, int n>
      void fm_invert (FieldMatrix<K,n,n>& B)
      {
        FieldMatrix<K,n,n> A(B);
        FieldMatrix<K,n,n>& L=A;
        FieldMatrix<K,n,n>& U=A;
    
        double norm=A.infinity_norm_real();     // for relative thresholds
        double pivthres = std::max(ISTLPrecision<>::absolute_limit(),norm*ISTLPrecision<>::pivoting_limit());
        double singthres = std::max(ISTLPrecision<>::absolute_limit(),norm*ISTLPrecision<>::singular_limit());
    
        // LU decomposition of A in A
        for (int i=0; i<n; i++)      // loop over all rows
        {
          double pivmax=fvmeta_absreal(A[i][i]);
    
          // pivoting ?
          if (pivmax<pivthres)
          {
            // compute maximum of column
            int imax=i; double abs;
            for (int k=i+1; k<n; k++)
              if ((abs=fvmeta_absreal(A[k][i]))>pivmax)
              {
                pivmax = abs; imax = k;
              }
            // swap rows
            if (imax!=i)
              for (int j=i; j<n; j++)
                std::swap(A[i][j],A[imax][j]);
          }
    
          // singular ?
          if (pivmax<singthres)
            DUNE_THROW(ISTLError,"matrix is singular");
    
          // eliminate
          for (int k=i+1; k<n; k++)
          {
            K factor = A[k][i]/A[i][i];
            L[k][i] = factor;
            for (int j=i+1; j<n; j++)
              A[k][j] -= factor*A[i][j];
          }
        }
    
        // initialize inverse
        B = 0;
        for (int i=0; i<n; i++) B[i][i] = 1;
    
        // L Y = I; multiple right hand sides
        for (int i=0; i<n; i++)
          for (int j=0; j<i; j++)
            for (int k=0; k<n; k++)
              B[i][k] -= L[i][j]*B[j][k];
    
        // U A^{-1} = Y
        for (int i=n-1; i>=0; i--)
          for (int k=0; k<n; k++)
          {
            for (int j=i+1; j<n; j++)
              B[i][k] -= U[i][j]*B[j][k];
            B[i][k] /= U[i][i];
          }
      }
    
      //! compute inverse n=1
      template<class K>
      void fm_invert (FieldMatrix<K,1,1>& A)
      {
    #ifdef DUNE_ISTL_WITH_CHECKING
        if (fvmeta_absreal(A[0][0])<ISTLPrecision<>::absolute_limit())
          DUNE_THROW(ISTLError,"matrix is singular");
    #endif
        A[0][0] = 1/A[0][0];
      }
    
      //! compute inverse n=2
      template<class K>
      void fm_invert (FieldMatrix<K,2,2>& A)
      {
        K detinv = A[0][0]*A[1][1]-A[0][1]*A[1][0];
    #ifdef DUNE_ISTL_WITH_CHECKING
        if (fvmeta_absreal(detinv)<ISTLPrecision<>::absolute_limit())
          DUNE_THROW(ISTLError,"matrix is singular");
    #endif
        detinv = 1/detinv;
    
        K temp=A[0][0];
        A[0][0] =  A[1][1]*detinv;
        A[0][1] = -A[0][1]*detinv;
        A[1][0] = -A[1][0]*detinv;
        A[1][1] =  temp*detinv;
      }
    
      //! left multiplication with matrix
      template<class K, int n, int m>
      void fm_leftmultiply (const FieldMatrix<K,n,n>& M, FieldMatrix<K,n,m>& A)
      {
        FieldMatrix<K,n,m> C(A);
    
        for (int i=0; i<n; i++)
          for (int j=0; j<m; j++)
          {
            A[i][j] = 0;
            for (int k=0; k<n; k++)
              A[i][j] += M[i][k]*C[k][j];
          }
      }
    
      //! left multiplication with matrix, n=1
      template<class K>
      void fm_leftmultiply (const FieldMatrix<K,1,1>& M, FieldMatrix<K,1,1>& A)
      {
        A[0][0] *= M[0][0];
      }
    
      //! left multiplication with matrix, n=2
      template<class K>
      void fm_leftmultiply (const FieldMatrix<K,2,2>& M, FieldMatrix<K,2,2>& A)
      {
        FieldMatrix<K,2,2> C(A);
    
        A[0][0] = M[0][0]*C[0][0] + M[0][1]*C[1][0];
        A[0][1] = M[0][0]*C[0][1] + M[0][1]*C[1][1];
        A[1][0] = M[1][0]*C[0][0] + M[1][1]*C[1][0];
        A[1][1] = M[1][0]*C[0][1] + M[1][1]*C[1][1];
      }
    
      //! right multiplication with matrix
      template<class K, int n, int m>
      void fm_rightmultiply (const FieldMatrix<K,m,m>& M, FieldMatrix<K,n,m>& A)
      {
        FieldMatrix<K,n,m> C(A);
    
        for (int i=0; i<n; i++)
          for (int j=0; j<m; j++)
          {
            A[i][j] = 0;
            for (int k=0; k<m; k++)
              A[i][j] += C[i][k]*M[k][j];
          }
      }
    
      //! right multiplication with matrix, n=1
      template<class K>
      void fm_rightmultiply (const FieldMatrix<K,1,1>& M, FieldMatrix<K,1,1>& A)
      {
        A[0][0] *= M[0][0];
      }
    
      //! right multiplication with matrix, n=2
      template<class K>
      void fm_rightmultiply (const FieldMatrix<K,2,2>& M, FieldMatrix<K,2,2>& A)
      {
        FieldMatrix<K,2,2> C(A);
    
        A[0][0] = C[0][0]*M[0][0] + C[0][1]*M[1][0];
        A[0][1] = C[0][0]*M[0][1] + C[0][1]*M[1][1];
        A[1][0] = C[1][0]*M[0][0] + C[1][1]*M[1][0];
        A[1][1] = C[1][0]*M[0][1] + C[1][1]*M[1][1];
      }
    
    
      /** Matrices represent linear maps from a vector space V to a vector space W.
           This class represents such a linear map by storing a two-dimensional
           array of numbers of a given field type K. The number of rows and
           columns is given at compile time.
    
               Implementation of all members uses template meta programs where appropriate
       */
      template<class K, int n, int m>
      class FieldMatrix
      {
      public:
        // standard constructor and everything is sufficient ...
    
        //===== type definitions and constants
    
        //! export the type representing the field
        typedef K field_type;
    
        //! export the type representing the components
        typedef K block_type;
    
        //! We are at the leaf of the block recursion
        enum {blocklevel = 1};
    
        //! Each row is implemented by a field vector
        typedef FieldVector<K,m> row_type;
    
        //! export size
        enum {rows = n, cols = m};
    
        //===== constructors
        /** \brief Default constructor
         */
        FieldMatrix () {}
    
        /** \brief Constructor initializing the whole matrix with a scalar
         */
        FieldMatrix (const K& k)
        {
          for (int i=0; i<n; i++) p[i] = k;
        }
    
        //===== random access interface to rows of the matrix
    
        //! random access to the rows
        row_type& operator[] (int i)
        {
    #ifdef DUNE_ISTL_WITH_CHECKING
          if (i<0 || i>=n) DUNE_THROW(ISTLError,"index out of range");
    #endif
          return p[i];
        }
    
        //! same for read only access
        const row_type& operator[] (int i) const
        {
    #ifdef DUNE_ISTL_WITH_CHECKING
          if (i<0 || i>=n) DUNE_THROW(ISTLError,"index out of range");
    #endif
          return p[i];
        }
    
    
        //===== iterator interface to rows of the matrix
    
        // forward declaration
        class ConstIterator;
    
        //! Iterator access to rows
        class Iterator
        {
        public:
          //! constructor
          Iterator (row_type* _p, int _i)
          {
            p = _p;
            i = _i;
          }
    
          //! empty constructor, use with care!
          Iterator ()
          {       }
    
          //! prefix increment
          Iterator& operator++()
          {
            ++i;
            return *this;
          }
    
          //! prefix decrement
          Iterator& operator--()
          {
            --i;
            return *this;
          }
    
          //! equality
          bool operator== (const Iterator& it) const
          {
            return (p+i)==(it.p+it.i);
          }
    
          //! inequality
          bool operator!= (const Iterator& it) const
          {
            return (p+i)!=(it.p+it.i);
          }
    
          //! dereferencing
          row_type& operator* ()
          {
            return p[i];
          }
    
          //! arrow
          row_type* operator-> ()
          {
            return p+i;
          }
    
          //! return index
          int index ()
          {
            return i;
          }
    
          friend class ConstIterator;
    
        private:
          row_type* p;
          int i;
        };
    
        //! begin iterator
        Iterator begin ()
        {
          return Iterator(p,0);
        }
    
        //! end iterator
        Iterator end ()
        {
          return Iterator(p,n);
        }
    
        //! begin iterator
        Iterator rbegin ()
        {
          return Iterator(p,n-1);
        }
    
        //! end iterator
        Iterator rend ()
        {
          return Iterator(p,-1);
        }
    
        //! rename the iterators for easier access
        typedef Iterator RowIterator;
        typedef typename row_type::Iterator ColIterator;
    
    
        //! Iterator access to rows
        class ConstIterator
        {
        public:
          //! constructor
          ConstIterator (const row_type* _p, int _i) : p(_p), i(_i)
          {       }
    
          //! empty constructor, use with care!
          ConstIterator ()
          {
            p = 0;
            i = 0;
          }
    
          //! prefix increment
          ConstIterator& operator++()
          {
            ++i;
            return *this;
          }
    
          //! prefix decrement
          ConstIterator& operator--()
          {
            --i;
            return *this;
          }
    
          //! equality
          bool operator== (const ConstIterator& it) const
          {
            return (p+i)==(it.p+it.i);
          }
    
          //! inequality
          bool operator!= (const ConstIterator& it) const
          {
            return (p+i)!=(it.p+it.i);
          }
    
          //! equality
          bool operator== (const Iterator& it) const
          {
            return (p+i)==(it.p+it.i);
          }
    
          //! inequality
          bool operator!= (const Iterator& it) const
          {
            return (p+i)!=(it.p+it.i);
          }
    
          //! dereferencing
          const row_type& operator* () const
          {
            return p[i];
          }
    
          //! arrow
          const row_type* operator-> () const
          {
            return p+i;
          }
    
          //! return index
          int index () const
          {
            return i;
          }
    
          friend class Iterator;
    
        private:
          const row_type* p;
          int i;
        };
    
        //! begin iterator
        ConstIterator begin () const
        {
          return ConstIterator(p,0);
        }
    
        //! end iterator
        ConstIterator end () const
        {
          return ConstIterator(p,n);
        }
    
        //! begin iterator
        ConstIterator rbegin () const
        {
          return ConstIterator(p,n-1);
        }
    
        //! end iterator
        ConstIterator rend () const
        {
          return ConstIterator(p,-1);
        }
    
        //! rename the iterators for easier access
        typedef ConstIterator ConstRowIterator;
        typedef typename row_type::ConstIterator ConstColIterator;
    
    
        //===== assignment from scalar
        FieldMatrix& operator= (const K& k)
        {
          fmmeta_assignscalar<n-1>::assignscalar(p,k);
          return *this;
        }
    
        //===== vector space arithmetic
    
        //! vector space addition
        FieldMatrix& operator+= (const FieldMatrix& y)
        {
          fmmeta_plusequal<n-1>::plusequal(*this,y);
          return *this;
        }
    
        //! vector space subtraction
        FieldMatrix& operator-= (const FieldMatrix& y)
        {
          fmmeta_minusequal<n-1>::minusequal(*this,y);
          return *this;
        }
    
        //! vector space multiplication with scalar
        FieldMatrix& operator*= (const K& k)
        {
          fmmeta_multequal<n-1>::multequal(*this,k);
          return *this;
        }
    
        //! vector space division by scalar
        FieldMatrix& operator/= (const K& k)
        {
          fmmeta_divequal<n-1>::divequal(*this,k);
          return *this;
        }
    
        //===== linear maps
    
        //! y += A x
        template<class X, class Y>
        void umv (const X& x, Y& y) const
        {
    #ifdef DUNE_ISTL_WITH_CHECKING
          if (x.N()!=M()) DUNE_THROW(ISTLError,"index out of range");
          if (y.N()!=N()) DUNE_THROW(ISTLError,"index out of range");
    #endif
          fmmeta_umv<n-1>::template umv<FieldMatrix,X,Y,m-1>(*this,x,y);
        }
    
        //! y += A^T x
        template<class X, class Y>
        void umtv (const X& x, Y& y) const
        {
    #ifdef DUNE_ISTL_WITH_CHECKING
          if (x.N()!=N()) DUNE_THROW(ISTLError,"index out of range");
          if (y.N()!=M()) DUNE_THROW(ISTLError,"index out of range");
    #endif
    
          for (int i=0; i<n; i++)
            for (int j=0; j<m; j++)
              y[j] += p[i][j]*x[i];
        }
    
        //! y += A^H x
        template<class X, class Y>
        void umhv (const X& x, Y& y) const
        {
    #ifdef DUNE_ISTL_WITH_CHECKING
          if (x.N()!=N()) DUNE_THROW(ISTLError,"index out of range");
          if (y.N()!=M()) DUNE_THROW(ISTLError,"index out of range");
    #endif
    
          for (int i=0; i<n; i++)
            for (int j=0; j<m; j++)
              y[j] += fm_ck(p[i][j])*x[i];
        }
    
        //! y -= A x
        template<class X, class Y>
        void mmv (const X& x, Y& y) const
        {
    #ifdef DUNE_ISTL_WITH_CHECKING
          if (x.N()!=M()) DUNE_THROW(ISTLError,"index out of range");
          if (y.N()!=N()) DUNE_THROW(ISTLError,"index out of range");
    #endif
          fmmeta_mmv<n-1>::template mmv<FieldMatrix,X,Y,m-1>(*this,x,y);
          //fm_mmv(*this,x,y);
        }
    
        //! y -= A^T x
        template<class X, class Y>
        void mmtv (const X& x, Y& y) const
        {
    #ifdef DUNE_ISTL_WITH_CHECKING
          if (x.N()!=N()) DUNE_THROW(ISTLError,"index out of range");
          if (y.N()!=M()) DUNE_THROW(ISTLError,"index out of range");
    #endif
    
          for (int i=0; i<n; i++)
            for (int j=0; j<m; j++)
              y[j] -= p[i][j]*x[i];
        }
    
        //! y -= A^H x
        template<class X, class Y>
        void mmhv (const X& x, Y& y) const
        {
    #ifdef DUNE_ISTL_WITH_CHECKING
          if (x.N()!=N()) DUNE_THROW(ISTLError,"index out of range");
          if (y.N()!=M()) DUNE_THROW(ISTLError,"index out of range");
    #endif
    
          for (int i=0; i<n; i++)
            for (int j=0; j<m; j++)
              y[j] -= fm_ck(p[i][j])*x[i];
        }
    
        //! y += alpha A x
        template<class X, class Y>
        void usmv (const K& alpha, const X& x, Y& y) const
        {
    #ifdef DUNE_ISTL_WITH_CHECKING
          if (x.N()!=M()) DUNE_THROW(ISTLError,"index out of range");
          if (y.N()!=N()) DUNE_THROW(ISTLError,"index out of range");
    #endif
          fmmeta_usmv<n-1>::template usmv<FieldMatrix,K,X,Y,m-1>(*this,alpha,x,y);
        }
    
        //! y += alpha A^T x
        template<class X, class Y>
        void usmtv (const K& alpha, const X& x, Y& y) const
        {
    #ifdef DUNE_ISTL_WITH_CHECKING
          if (x.N()!=N()) DUNE_THROW(ISTLError,"index out of range");
          if (y.N()!=M()) DUNE_THROW(ISTLError,"index out of range");
    #endif
    
          for (int i=0; i<n; i++)
            for (int j=0; j<m; j++)
              y[j] += alpha*p[i][j]*x[i];
        }
    
        //! y += alpha A^H x
        template<class X, class Y>
        void usmhv (const K& alpha, const X& x, Y& y) const
        {
    #ifdef DUNE_ISTL_WITH_CHECKING
          if (x.N()!=N()) DUNE_THROW(ISTLError,"index out of range");
          if (y.N()!=M()) DUNE_THROW(ISTLError,"index out of range");
    #endif
    
          for (int i=0; i<n; i++)
            for (int j=0; j<m; j++)
              y[j] += alpha*fm_ck(p[i][j])*x[i];
        }
    
        //===== norms
    
        //! frobenius norm: sqrt(sum over squared values of entries)
        double frobenius_norm () const
        {
          double sum=0;
          for (int i=0; i<n; ++i) sum += p[i].two_norm2();
          return sqrt(sum);
        }
    
        //! square of frobenius norm, need for block recursion
        double frobenius_norm2 () const
        {
          double sum=0;
          for (int i=0; i<n; ++i) sum += p[i].two_norm2();
          return sum;
        }
    
        //! infinity norm (row sum norm, how to generalize for blocks?)
        double infinity_norm () const
        {
          double max=0;
          for (int i=0; i<n; ++i) max = std::max(max,p[i].one_norm());
          return max;
        }
    
        //! simplified infinity norm (uses Manhattan norm for complex values)
        double infinity_norm_real () const
        {
          double max=0;
          for (int i=0; i<n; ++i) max = std::max(max,p[i].one_norm_real());
          return max;
        }
    
        //===== solve
    
        /** \brief Solve system A x = b
         *
         * \exception ISTLError if the matrix is singular
         */
        template<class V>
        void solve (V& x, const V& b) const
        {
          fm_solve(*this,x,b);
        }
    
        /** \brief Compute inverse
         *
         * \exception ISTLError if the matrix is singular
         */
        void invert ()
        {
          fm_invert(*this);
        }
    
        //! calculates the determinant of this matrix
        K determinant () const;
    
        //! Multiplies M from the left to this matrix
        FieldMatrix& leftmultiply (const FieldMatrix<K,n,n>& M)
        {
          fm_leftmultiply(M,*this);
          return *this;
        }
    
        //! Multiplies M from the right to this matrix
        FieldMatrix& rightmultiply (const FieldMatrix<K,n,n>& M)
        {
          fm_rightmultiply(M,*this);
          return *this;
        }
    
    
        //===== sizes
    
        //! number of blocks in row direction
        int N () const
        {
          return n;