Newer
Older
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_FMATRIXEIGENVALUES_CC
#define DUNE_FMATRIXEIGENVALUES_CC
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <iostream>
#include <cmath>
#include <cassert>
#include <dune/common/exceptions.hh>
#if HAVE_LAPACK
#define DSYEV_FORTRAN FC_FUNC (dsyev, DSYEV)
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#define DGEEV_FORTRAN FC_FUNC (dgeev, DGEEV)
// dsyev declaration (in liblapack)
extern "C" {
/*
*
** purpose
** =======
**
** xsyev computes all eigenvalues and, optionally, eigenvectors of a
** BASE DATA TYPE symmetric matrix a.
**
** arguments
** =========
**
** jobz (input) char
** = 'n': compute eigenvalues only;
** = 'v': compute eigenvalues and eigenvectors.
**
** uplo (input) char
** = 'u': upper triangle of a is stored;
** = 'l': lower triangle of a is stored.
**
** n (input) long int
** the order of the matrix a. n >= 0.
**
** a (input/output) BASE DATA TYPE array, dimension (lda, n)
** on entry, the symmetric matrix a. if uplo = 'u', the
** leading n-by-n upper triangular part of a contains the
** upper triangular part of the matrix a. if uplo = 'l',
** the leading n-by-n lower triangular part of a contains
** the lower triangular part of the matrix a.
** on exit, if jobz = 'v', then if info = 0, a contains the
** orthonormal eigenvectors of the matrix a.
** if jobz = 'n', then on exit the lower triangle (if uplo='l')
** or the upper triangle (if uplo='u') of a, including the
** diagonal, is destroyed.
**
** lda (input) long int
** the leading dimension of the array a. lda >= max(1,n).
**
** w (output) BASE DATA TYPE array, dimension (n)
** if info = 0, the eigenvalues in ascending order.
**
**
**
** info (output) long int
** = 0: successful exit
** < 0: if info = -i, the i-th argument had an illegal value
** > 0: if info = i, the algorithm failed to converge; i
** off-diagonal elements of an intermediate tridiagonal
** form did not converge to zero.
**
**/
extern void DSYEV_FORTRAN(const char* jobz, const char* uplo, const long
int* n, double* a, const long int* lda, double* w,
double* work, const long int* lwork, long int* info);
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
/*
*
** purpose
** =======
**
** xgeev computes for an N-by-N BASE DATA TYPE nonsymmetric matrix A, the
** eigenvalues and, optionally, the left and/or right eigenvectors.
**
** The right eigenvector v(j) of A satisfies
** A * v(j) = lambda(j) * v(j)
** where lambda(j) is its eigenvalue.
** The left eigenvector u(j) of A satisfies
** u(j)**T * A = lambda(j) * u(j)**T
** where u(j)**T denotes the transpose of u(j).
**
** The computed eigenvectors are normalized to have Euclidean norm
** equal to 1 and largest component real.
**
** arguments
** =========
**
** jobvl (input) char
** = 'n': left eigenvectors of a are not computed;
** = 'v': left eigenvectors of a are computed.
**
** jobvr (input) char
** = 'n': right eigenvectors of a are not computed;
** = 'v': right eigenvectors of a are computed.
**
** n (input) long int
** the order of the matrix v. v >= 0.
**
** a (input/output) BASE DATA TYPE array, dimension (lda,n)
** on entry, the n-by-n matrix a.
** on exit, a has been overwritten.
**
** lda (input) long int
** the leading dimension of the array a. lda >= max(1,n).
**
** wr (output) BASE DATA TYPE array, dimension (n)
** wi (output) BASE DATA TYPE array, dimension (n)
** wr and wi contain the real and imaginary parts,
** respectively, of the computed eigenvalues. complex
** conjugate pairs of eigenvalues appear consecutively
** with the eigenvalue having the positive imaginary part
** first.
**
** vl (output) COMPLEX DATA TYPE array, dimension (ldvl,n)
** if jobvl = 'v', the left eigenvectors u(j) are stored one
** after another in the columns of vl, in the same order
** as their eigenvalues.
** if jobvl = 'n', vl is not referenced.
** if the j-th eigenvalue is real, then u(j) = vl(:,j),
** the j-th column of vl.
** if the j-th and (j+1)-st eigenvalues form a complex
** conjugate pair, then u(j) = vl(:,j) + i*vl(:,j+1) and
** u(j+1) = vl(:,j) - i*vl(:,j+1).
**
** ldvl (input) long int
** the leading dimension of the array vl. ldvl >= 1; if
** jobvl = 'v', ldvl >= n.
**
** vr (output) COMPLEX DATA TYPE array, dimension (ldvr,n)
** if jobvr = 'v', the right eigenvectors v(j) are stored one
** after another in the columns of vr, in the same order
** as their eigenvalues.
** if jobvr = 'n', vr is not referenced.
** if the j-th eigenvalue is real, then v(j) = vr(:,j),
** the j-th column of vr.
** if the j-th and (j+1)-st eigenvalues form a complex
** conjugate pair, then v(j) = vr(:,j) + i*vr(:,j+1) and
** v(j+1) = vr(:,j) - i*vr(:,j+1).
**
** ldvr (input) long int
** the leading dimension of the array vr. ldvr >= 1; if
** jobvr = 'v', ldvr >= n.
**
** work (workspace/output) BASE DATA TYPE array, dimension (max(1,lwork))
** on exit, if info = 0, work(1) returns the optimal lwork.
**
** lwork (input) long int
** the dimension of the array work. lwork >= max(1,3*n), and
** if jobvl = 'v' or jobvr = 'v', lwork >= 4*n. for good
** performance, lwork must generally be larger.
**
** if lwork = -1, then a workspace query is assumed; the routine
** only calculates the optimal size of the work array, returns
** this value as the first entry of the work array, and no error
** message related to lwork is issued by xerbla.
**
** info (output) long int
** = 0: successful exit
** < 0: if info = -i, the i-th argument had an illegal value.
** > 0: if info = i, the qr algorithm failed to compute all the
** eigenvalues, and no eigenvectors have been computed;
** elements i+1:n of wr and wi contain eigenvalues which
** have converged.
**
**/
extern void DGEEV_FORTRAN(const char* jobvl, const char* jobvr, const long
int* n, double* a, const long int* lda, double* wr, double* wi, double* vl,
const long int* ldvl, double* vr, const long int* ldvr, double* work,
const long int* lwork, const long int* info);
} // end extern C
#endif
namespace Dune {
namespace FMatrixHelp {
void eigenValuesLapackCall(
const char* jobz, const char* uplo, const long
int* n, double* a, const long int* lda, double* w,
double* work, const long int* lwork, long int* info)
{
#if HAVE_LAPACK
// call LAPACK dsyev
DSYEV_FORTRAN(jobz, uplo, n, a, lda, w, work, lwork, info);
#else
DUNE_THROW(NotImplemented,"eigenValuesLapackCall: LAPACK not found!");
#endif
}
void eigenValuesNonsymLapackCall(
const char* jobvl, const char* jobvr, const long
int* n, double* a, const long int* lda, double* wr, double* wi, double* vl,
const long int* ldvl, double* vr, const long int* ldvr, double* work,
const long int* lwork, const long int* info)
{
#if HAVE_LAPACK
// call LAPACK dgeev
DGEEV_FORTRAN(jobvl, jobvr, n, a, lda, wr, wi, vl, ldvl, vr, ldvr,
work, lwork, info);
#else
DUNE_THROW(NotImplemented,"eigenValuesNonsymLapackCall: LAPACK not found!");
#endif
}
} // end namespace FMatrixHelp
} // end namespace Dune
#endif