Forked from
Core Modules / dune-common
6053 commits behind the upstream repository.
-
Martin Nolte authored
[[Imported from SVN: r6219]]
Martin Nolte authored[[Imported from SVN: r6219]]
densevector.hh 13.58 KiB
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_DENSEVECTOR_HH
#define DUNE_DENSEVECTOR_HH
#include <limits>
#include "genericiterator.hh"
#include "ftraits.hh"
#include "matvectraits.hh"
namespace Dune {
// forward declaration of template
template<typename V> class DenseVector;
template<typename V>
struct FieldTraits< DenseVector<V> >
{
typedef typename FieldTraits< typename DenseMatVecTraits<V>::value_type >::field_type field_type;
typedef typename FieldTraits< typename DenseMatVecTraits<V>::value_type >::real_type real_type;
};
/** @defgroup DenseMatVec Dense Matrix and Vector Template Library
@ingroup Common
@{
*/
/*! \file
* \brief This file implements a the dense vector interface, with an exchangeable storage class
*/
namespace fvmeta
{
/**
\private
\memberof Dune::DenseVector
*/
template<class K>
inline typename FieldTraits<K>::real_type absreal (const K& k)
{
return std::abs(k);
}
/**
\private
\memberof Dune::DenseVector
*/
template<class K>
inline typename FieldTraits<K>::real_type absreal (const std::complex<K>& c)
{
return std::abs(c.real()) + std::abs(c.imag());
}
/**
\private
\memberof Dune::DenseVector
*/
template<class K>
inline typename FieldTraits<K>::real_type abs2 (const K& k)
{
return k*k;
}
/**
\private
\memberof Dune::DenseVector
*/
template<class K>
inline typename FieldTraits<K>::real_type abs2 (const std::complex<K>& c)
{
return c.real()*c.real() + c.imag()*c.imag();
}
/**
\private
\memberof Dune::DenseVector
*/
template<class K, bool isInteger = std::numeric_limits<K>::is_integer>
struct Sqrt
{
static inline typename FieldTraits<K>::real_type sqrt (const K& k)
{
return std::sqrt(k);
}
};
/**
\private
\memberof Dune::DenseVector
*/
template<class K>
struct Sqrt<K, true>
{
static inline typename FieldTraits<K>::real_type sqrt (const K& k)
{
return typename FieldTraits<K>::real_type(std::sqrt(double(k)));
}
};
/**
\private
\memberof Dune::DenseVector
*/
template<class K>
inline typename FieldTraits<K>::real_type sqrt (const K& k)
{
return Sqrt<K>::sqrt(k);
}
}
/*! \brief Generic iterator class for dense vector and matrix implementations
provides sequential access to DenseVector, FieldVector and FieldMatrix
*/
template<class C, class T>
class DenseIterator :
public Dune::RandomAccessIteratorFacade<DenseIterator<C,T>,T, T&, std::ptrdiff_t>
{
friend class DenseIterator<typename remove_const<C>::type, typename remove_const<T>::type >;
friend class DenseIterator<const typename remove_const<C>::type, const typename remove_const<T>::type >;
public:
/**
* @brief The type of the difference between two positions.
*/
typedef std::ptrdiff_t DifferenceType;
/**
* @brief The type to index the underlying container.
*/
typedef typename C::size_type SizeType;
// Constructors needed by the base iterators.
DenseIterator()
: container_(0), position_()
{}
DenseIterator(C& cont, SizeType pos)
: container_(&cont), position_(pos)
{}
DenseIterator(const DenseIterator<typename remove_const<C>::type, typename remove_const<T>::type >& other)
: container_(other.container_), position_(other.position_)
{}
// Methods needed by the forward iterator
bool equals(const DenseIterator<typename remove_const<C>::type,typename remove_const<T>::type>& other) const
{
return position_ == other.position_ && container_ == other.container_;
}
bool equals(const DenseIterator<const typename remove_const<C>::type,const typename remove_const<T>::type>& other) const
{
return position_ == other.position_ && container_ == other.container_;
}
T& dereference() const {
return container_->operator[](position_);
}
void increment(){
++position_;
}
// Additional function needed by BidirectionalIterator
void decrement(){
--position_;
}
// Additional function needed by RandomAccessIterator
T& elementAt(DifferenceType i) const {
return container_->operator[](position_+i);
}
void advance(DifferenceType n){
position_=position_+n;
}
DifferenceType distanceTo(DenseIterator<const typename remove_const<C>::type,const typename remove_const<T>::type> other) const
{
assert(other.container_==container_);
return other.position_ - position_;
}
DifferenceType distanceTo(DenseIterator<typename remove_const<C>::type, typename remove_const<T>::type> other) const
{
assert(other.container_==container_);
return other.position_ - position_;
}
//! return index
SizeType index () const
{
return this->position_;
}
private:
C *container_;
SizeType position_;
};
/** \brief Interface for a class of dense vectors over a given field.
*
* \tparam V implementation class of the vector
* \tparam T value type
* \tparam S size type
*
* V has to provide the following members:
* @code
* T & _access (size_type);
* const T & _access (size_type) const;
* size_type _size () const;
* @endcode
*/
template<typename V>
class DenseVector
{
typedef DenseMatVecTraits<V> Traits;
// typedef typename Traits::value_type K;
// Curiously recuring template pattern
V & asImp() { return static_cast<V&>(*this); }
const V & asImp() const { return static_cast<const V&>(*this); }
public:
//===== type definitions and constants
//! type of derived vector class
typedef typename Traits::derived_type derived_type;
//! export the type representing the field
typedef typename Traits::value_type value_type;
//! export the type representing the field
typedef typename Traits::value_type field_type;
//! export the type representing the components
typedef typename Traits::value_type block_type;
//! The type used for the index access and size operation
typedef typename Traits::size_type size_type;
//! We are at the leaf of the block recursion
enum {
//! The number of block levels we contain
blocklevel = 1
};
//===== assignment from scalar
//! Assignment operator for scalar
derived_type& operator= (const value_type& k)
{
for (size_type i=0; i<size(); i++)
(*this)[i] = k;
return asImp();
}
//===== access to components
//! random access
value_type & operator[] (size_type i)
{
return asImp().vec_access(i);
}
const value_type & operator[] (size_type i) const
{
return asImp().vec_access(i);
}
//! size method
size_type size() const
{
return asImp().vec_size();
}
//! Iterator class for sequential access
typedef DenseIterator<DenseVector,value_type> Iterator;
//! typedef for stl compliant access
typedef Iterator iterator;
//! begin iterator
Iterator begin ()
{
return Iterator(*this,0);
}
//! end iterator
Iterator end ()
{
return Iterator(*this,size());
}
//! begin iterator
Iterator rbegin ()
{
return Iterator(*this,size()-1);
}
//! end iterator
Iterator rend ()
{
return Iterator(*this,-1);
}
//! return iterator to given element or end()
Iterator find (size_type i)
{
return Iterator(*this,std::min(i,size()));
}
//! ConstIterator class for sequential access
typedef DenseIterator<const DenseVector,const value_type> ConstIterator;
//! typedef for stl compliant access
typedef ConstIterator const_iterator;
//! begin ConstIterator
ConstIterator begin () const
{
return ConstIterator(*this,0);
}
//! end ConstIterator
ConstIterator end () const
{
return ConstIterator(*this,size());
}
//! begin ConstIterator
ConstIterator rbegin () const
{
return ConstIterator(*this,size()-1);
}
//! end ConstIterator
ConstIterator rend () const
{
return ConstIterator(*this,-1);
}
//! return iterator to given element or end()
ConstIterator find (size_type i) const
{
return ConstIterator(*this,std::min(i,size()));
}
//===== vector space arithmetic
//! vector space addition
derived_type& operator+= (const DenseVector& y)
{
assert(y.size() == size());
for (size_type i=0; i<size(); i++)
(*this)[i] += y[i];
return asImp();
}
//! vector space subtraction
derived_type& operator-= (const DenseVector& y)
{
assert(y.size() == size());
for (size_type i=0; i<size(); i++)
(*this)[i] -= y[i];
return asImp();
}
//! Binary vector addition
derived_type operator+ (const DenseVector& b) const
{
derived_type z = asImp();
return (z+=b);
}
//! Binary vector subtraction
derived_type operator- (const DenseVector& b) const
{
derived_type z = asImp();
return (z-=b);
}
//! vector space add scalar to all comps
derived_type& operator+= (const value_type& k)
{
for (size_type i=0; i<size(); i++)
(*this)[i] += k;
return asImp();
}
//! vector space subtract scalar from all comps
derived_type& operator-= (const value_type& k)
{
for (size_type i=0; i<size(); i++)
(*this)[i] -= k;
return asImp();
}
//! vector space multiplication with scalar
derived_type& operator*= (const value_type& k)
{
for (size_type i=0; i<size(); i++)
(*this)[i] *= k;
return asImp();
}
//! vector space division by scalar
derived_type& operator/= (const value_type& k)
{
for (size_type i=0; i<size(); i++)
(*this)[i] /= k;
return asImp();
}
//! Binary vector comparison
bool operator== (const DenseVector& y) const
{
assert(y.size() == size());
for (size_type i=0; i<size(); i++)
if ((*this)[i]!=y[i])
return false;
return true;
}
//! Binary vector incomparison
bool operator!= (const DenseVector& y) const
{
return !operator==(y);
}
//! vector space axpy operation ( *this += a y )
derived_type& axpy (const value_type& a, const DenseVector& y)
{
assert(y.size() == size());
for (size_type i=0; i<size(); i++)
(*this)[i] += a*y[i];
return asImp();
}
//===== Euclidean scalar product
//! scalar product (x^T y)
value_type operator* (const DenseVector& y) const
{
assert(y.size() == size());
value_type result( 0 );
for (size_type i=0; i<size(); i++)
result += (*this)[i]*y[i];
return result;
}
//===== norms
//! one norm (sum over absolute values of entries)
typename FieldTraits<value_type>::real_type one_norm() const {
typename FieldTraits<value_type>::real_type result( 0 );
for (size_type i=0; i<size(); i++)
result += std::abs((*this)[i]);
return result;
}
//! simplified one norm (uses Manhattan norm for complex values)
typename FieldTraits<value_type>::real_type one_norm_real () const
{
typename FieldTraits<value_type>::real_type result( 0 );
for (size_type i=0; i<size(); i++)
result += fvmeta::absreal((*this)[i]);
return result;
}
//! two norm sqrt(sum over squared values of entries)
typename FieldTraits<value_type>::real_type two_norm () const
{
typename FieldTraits<value_type>::real_type result( 0 );
for (size_type i=0; i<size(); i++)
result += fvmeta::abs2((*this)[i]);
return fvmeta::sqrt(result);
}
//! square of two norm (sum over squared values of entries), need for block recursion
typename FieldTraits<value_type>::real_type two_norm2 () const
{
typename FieldTraits<value_type>::real_type result( 0 );
for (size_type i=0; i<size(); i++)
result += fvmeta::abs2((*this)[i]);
return result;
}
//! infinity norm (maximum of absolute values of entries)
typename FieldTraits<value_type>::real_type infinity_norm () const
{
typename FieldTraits<value_type>::real_type result( 0 );
for (size_type i=0; i<size(); i++)
result = std::max(result, std::abs((*this)[i]));
return result;
}
//! simplified infinity norm (uses Manhattan norm for complex values)
typename FieldTraits<value_type>::real_type infinity_norm_real () const
{
typename FieldTraits<value_type>::real_type result( 0 );
for (size_type i=0; i<size(); i++)
result = std::max(result, fvmeta::absreal((*this)[i]));
return result;
}
//===== sizes
//! number of blocks in the vector (are of size 1 here)
size_type N () const
{
return size();
}
//! dimension of the vector space
size_type dim () const
{
return size();
}
};
/** \brief Write a DenseVector to an output stream
* \relates DenseVector
*
* \param[in] s std :: ostream to write to
* \param[in] v DenseVector to write
*
* \returns the output stream (s)
*/
template<typename V>
std::ostream& operator<< (std::ostream& s, const DenseVector<V>& v)
{
for (typename DenseVector<V>::size_type i=0; i<v.size(); i++)
s << ((i>0) ? " " : "") << v[i];
return s;
}
/** @} end documentation */
} // end namespace
#endif // DUNE_DENSEVECTOR_HH