Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
dune-common
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Timo Koch
dune-common
Commits
21b5cafc
Commit
21b5cafc
authored
20 years ago
by
Peter Bastian
Browse files
Options
Downloads
Patches
Plain Diff
Text fuer Matrixinterface
[[Imported from SVN: r825]]
parent
5fe15f69
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
istl/doc/istl.tex
+73
-25
73 additions, 25 deletions
istl/doc/istl.tex
with
73 additions
and
25 deletions
istl/doc/istl.tex
+
73
−
25
View file @
21b5cafc
...
...
@@ -119,7 +119,7 @@ structure. Here are some examples:
\begin{itemize}
\item
Certain discretizations for systems of PDEs or higher order
methods result in matrices where individual entries are replaced by
small blocks, say of size
$
2
\time
2
$
or
$
4
\times
4
$
. Straightforward
small blocks, say of size
$
2
\time
s
2
$
or
$
4
\times
4
$
. Straightforward
iterative methods solve these small blocks exactly, see
e.~g.~
\cite
{
BH99
}
.
\item
Equation-wise ordering for systems results in matrices having an
...
...
@@ -137,7 +137,7 @@ structure. Here are some examples:
It is very important to note that this structure is typically known at
compile-time and this knowledge should be exploited to produce
efficient code. Moreover, block structuredness is recursive,
i.~e.~
block
s are build from blocks which
are
themselves build from
i.~e.~
matrice
s are build from blocks which
can
themselves
be
build from
blocks.
The Matrix Template Library also offers the possibility to partition a
...
...
@@ -283,57 +283,47 @@ in the section on memory management.
\hline
\hline
\texttt
{
X::field
\_
type
}
&
T
&
T is assignable
\\
\hline
\texttt
{
X::block
\_
type
}
&
T
&
T is assignable
\\
\hline
\texttt
{
X::allocator
\_
type
}
&
T
&
see mem.~mgt.
\\
\hline
\texttt
{
X::blocklevel
}
&
\texttt
{
int
}
&
block levels inside
\\
\hline
\texttt
{
X::Iterator
}
&
T
&
read/write access
\\
\hline
\texttt
{
X::ConstIterator
}
&
T
&
read-only access
\\
\hline
\texttt
{
X::operator=(field
\_
type
\&
)
}
&
\texttt
{
X
\&
}
&
\\
\texttt
{
X::X()
}
&
&
empty vector
\\
\texttt
{
X::X(X
\&
)
}
&
&
deep copy
\\
\texttt
{
X::
}$
\sim
$
\texttt
{
X()
}
&
&
free memory
\\
\texttt
{
X::operator=(X
\&
)
}
&
\texttt
{
X
\&
}
&
\\
\texttt
{
X::operator=(field
\_
type
\&
)
}
&
\texttt
{
X
\&
}
&
from scalar
\\
\hline
\texttt
{
X::operator[](int)
}
&
\texttt
{
field
\_
type
\&
}
&
\\
\hline
\texttt
{
X::operator[](int)
}
&
\texttt
{
const field
\_
type
\&
}
&
\\
\texttt
{
X::begin()
}
&
\texttt
{
Iterator
}
&
\\
\texttt
{
X::end()
}
&
\texttt
{
Iterator
}
&
\\
\texttt
{
X::begin()
}
&
\texttt
{
ConstIterator
}
&
\\
\texttt
{
X::end()
}
&
\texttt
{
ConstIterator
}
&
\\
\texttt
{
X::find(int)
}
&
\texttt
{
Iterator
}
&
\\
\hline
\texttt
{
X::operator+=(X
\&
)
}
&
\texttt
{
X
\&
}
&
$
x
=
x
+
y
$
\\
\hline
\texttt
{
X::operator-=(X
\&
)
}
&
\texttt
{
X
\&
}
&
$
x
=
x
-
y
$
\\
\hline
\texttt
{
X::operator*=(field
\_
type
\&
)
}
&
\texttt
{
X
\&
}
&
$
x
=
\alpha
x
$
\\
\hline
\texttt
{
X::operator/=(field
\_
type
\&
)
}
&
\texttt
{
X
\&
}
&
$
x
=
\alpha
^{
-
1
}
x
$
\\
\hline
\texttt
{
X::operator*=(field
\_
type
\&
)
}
&
\texttt
{
X
\&
}
&
$
x
=
\alpha
x
$
\\
\texttt
{
X::operator/=(field
\_
type
\&
)
}
&
\texttt
{
X
\&
}
&
$
x
=
\alpha
^{
-
1
}
x
$
\\
\texttt
{
X::axpy(field
\_
type
\&
,X
\&
)
}
&
\texttt
{
X
\&
}
&
$
x
=
x
+
\alpha
y
$
\\
\hline
\texttt
{
X::operator*(X
\&
)
}
&
\texttt
{
field
\_
type
}
&
$
x
\cdot
y
$
\\
\hline
\texttt
{
X::one
\_
norm()
}
&
\texttt
{
double
}
&
$
\sum
_
i
\sqrt
{
Re
(
x
_
i
)
^
2
+
Im
(
x
_
i
)
^
2
}$
\\
\hline
\texttt
{
X::one
\_
norm
\_
real()
}
&
\texttt
{
double
}
&$
\sum
_
i
(
|Re
(
x
_
i
)
|
+
|Im
(
x
_
i
)
|
)
$
\\
\hline
\texttt
{
X::two
\_
norm()
}
&
\texttt
{
double
}
&$
\sqrt
{
\sum
_
i
(
Re
(
x
_
i
)
^
2
+
Im
(
x
_
i
)
^
2
)
}$
\\
\hline
\texttt
{
X::two
\_
norm2()
}
&
\texttt
{
double
}
&$
\sum
_
i
(
Re
(
x
_
i
)
^
2
+
Im
(
x
_
i
)
^
2
)
$
\\
\hline
\texttt
{
X::infinity
\_
norm()
}
&
\texttt
{
double
}
&$
\max
_
i
\sqrt
{
Re
(
x
_
i
)
^
2
+
Im
(
x
_
i
)
^
2
}$
\\
\hline
\texttt
{
X::infinity
\_
norm
\_
real()
}
&
\texttt
{
double
}
&$
\max
_
i
(
|Re
(
x
_
i
)
|
+
|Im
(
x
_
i
)
|
)
$
\\
\hline
\texttt
{
X::N()
}
&
\texttt
{
int
}
&
number of blocks
\\
\hline
\texttt
{
X::dim()
}
&
\texttt
{
int
}
&
dimension of space
\\
\hline
\end{tabular}
\end{center}
\caption
{
Members of a
vector class
.
}
\caption
{
Members of a
class
\lstinline
!X! conforming to the vector interface
.
}
\label
{
Fig:VectorMembers
}
\end{figure}
...
...
@@ -360,6 +350,64 @@ structure can be generated simply with the copy constructor.
\subsection
{
Operations
}
\begin{figure}
\begin{center}
\begin{tabular}
{
|l|l|l|
}
\hline
\textbf
{
expression
}
&
\textbf
{
return type
}
&
\textbf
{
note
}
\\
\hline
\hline
\texttt
{
M::field
\_
type
}
&
T
&
T is assignable
\\
\texttt
{
M::block
\_
type
}
&
T
&
T is assignable
\\
\texttt
{
M::row
\_
type
}
&
T
&
a T is assignable
\\
\texttt
{
M::allocator
\_
type
}
&
T
&
see mem.~mgt.
\\
\texttt
{
M::blocklevel
}
&
\texttt
{
int
}
&
block levels inside
\\
\texttt
{
M::RowIterator
}
&
T
&
over rows
\\
\texttt
{
M::ColIterator
}
&
T
&
over columns
\\
\hline
\texttt
{
M::M()
}
&
&
empty matrix
\\
\texttt
{
M::M(M
\&
)
}
&
&
deep copy
\\
\texttt
{
M::
}$
\sim
$
\texttt
{
M()
}
&
&
free memory
\\
\texttt
{
M::operator=(M
\&
)
}
&
\texttt
{
M
\&
}
&
\\
\texttt
{
M::operator=(field
\_
type
\&
)
}
&
\texttt
{
M
\&
}
&
from scalar
\\
\hline
\texttt
{
M::operator[](int)
}
&
\texttt
{
row
\_
type
\&
}
&
\\
\texttt
{
M::operator[](int)
}
&
\texttt
{
const row
\_
type
\&
}
&
\\
\texttt
{
M::begin()
}
&
\texttt
{
RowIterator
}
&
\\
\texttt
{
M::end()
}
&
\texttt
{
RowIterator
}
&
\\
\hline
\texttt
{
M::operator*=(field
\_
type
\&
)
}
&
\texttt
{
M
\&
}
&
$
A
=
\alpha
A
$
\\
\texttt
{
M::operator/=(field
\_
type
\&
)
}
&
\texttt
{
M
\&
}
&
$
A
=
\alpha
^{
-
1
}
A
$
\\
\hline
\texttt
{
M::umv(X
\&
x,Y
\&
y)
}
&
&
$
y
=
y
+
Ax
$
\\
\texttt
{
M::mmv(X
\&
x,Y
\&
y)
}
&
&
$
y
=
y
-
Ax
$
\\
\texttt
{
M::usmv(field
\_
type
\&
,X
\&
x,Y
\&
y)
}
&
&
$
y
=
y
+
\alpha
Ax
$
\\
\texttt
{
M::umtv(X
\&
x,Y
\&
y)
}
&
&
$
y
=
y
+
A
^
Tx
$
\\
\texttt
{
M::mmtv(X
\&
x,Y
\&
y)
}
&
&
$
y
=
y
-
A
^
Tx
$
\\
\texttt
{
M::usmtv(field
\_
type
\&
,X
\&
x,Y
\&
y)
}
&
&
$
y
=
y
+
\alpha
A
^
Tx
$
\\
\texttt
{
M::umhv(X
\&
x,Y
\&
y)
}
&
&
$
y
=
y
+
A
^
Hx
$
\\
\texttt
{
M::mmhv(X
\&
x,Y
\&
y)
}
&
&
$
y
=
y
-
A
^
Hx
$
\\
\texttt
{
M::usmhv(field
\_
type
\&
,X
\&
x,Y
\&
y)
}
&
&
$
y
=
y
+
\alpha
A
^
Hx
$
\\
\hline
\texttt
{
M::frobenius
\_
norm()
}
&
\texttt
{
double
}
&
\small
$
\sqrt
{
\sum\limits
_{
i,j
}
(
Re
(
a
_{
ij
}
)
^
2
+
Im
(
a
_{
ij
}
)
^
2
)
}$
\\
\texttt
{
M::frobenius
\_
norm2()
}
&
\texttt
{
double
}
&
\small
$
\sum\limits
_{
i,j
}
(
Re
(
a
_{
ij
}
)
^
2
+
Im
(
a
_{
ij
}
)
^
2
)
$
\\
\hline
\texttt
{
M::N()
}
&
\texttt
{
int
}
&
row blocks
\\
\texttt
{
M::M()
}
&
\texttt
{
int
}
&
col blocks
\\
\texttt
{
M::rowdim(int)
}
&
\texttt
{
int
}
&
dim.~of row block
\\
\texttt
{
M::rowdim()
}
&
\texttt
{
int
}
&
dim.~of row space
\\
\texttt
{
M::coldim(int)
}
&
\texttt
{
int
}
&
dim.~of col block
\\
\texttt
{
M::coldim()
}
&
\texttt
{
int
}
&
dim.~of col space
\\
\texttt
{
M::exists(int i, int j)
}
&
\texttt
{
bool
}
&
\\
\hline
\end{tabular}
\end{center}
\caption
{
Members of a class
\lstinline
!M! conforming to the matrix
interface.
\lstinline
!X! and
\lstinline
!Y! are any vector classes.
}
\label
{
Fig:MatrixMembers
}
\end{figure}
\subsection
{
Matrix creation
}
\section
{
Algorithms
}
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment