Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
dune-common
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Timo Koch
dune-common
Commits
8d16dcbe
Commit
8d16dcbe
authored
20 years ago
by
Jorrit Fahlke
Browse files
Options
Downloads
Patches
Plain Diff
Document how to calculate the inverse Jacobian.
[[Imported from SVN: r1832]]
parent
4589a1f2
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
grid/common/geometry.hh
+53
-1
53 additions, 1 deletion
grid/common/geometry.hh
with
53 additions
and
1 deletion
grid/common/geometry.hh
+
53
−
1
View file @
8d16dcbe
...
...
@@ -119,7 +119,59 @@ namespace Dune
return
realGeometry
.
integrationElement
(
local
);
}
//! can only be called for mydim=cdim!
/** \brief can only be called for mydim=cdim!
@par Calculating the inverse Jacobian
<!---------------------------------->
The definition of the inverse Jacobian is:
\f[x^l=J^{-1}\cdot x^g\f]
Consider \f$\vec{x}\f$ represented in two bases: \f$x^l\f$ for the
local base of the reference geometry \f$\vec{l}_\alpha\f$ and
\f$x^g\f$ for the global base \f$\vec{g}_\alpha\f$.
\f[\vec{x}=\vec{g}_\alpha\cdot x^g_\alpha=\vec{l}_\alpha\cdot x^l_\alpha\f]
Or, for two dimensions:
\f[\vec{x}=\left(\begin{array}{cc}\vec{g}_0&\vec{g}_1\end{array}\right)
\cdot\left(\begin{array}{c}x^g_0\\x^g_1\end{array}\right)
=\left(\begin{array}{cc}\vec{l}_0&\vec{l}_1\end{array}\right)
\cdot\left(\begin{array}{c}x^l_0\\x^l_1\end{array}\right)\f]
We can represent the global base in terms of the local base as well:
\f[\vec{g}_\alpha=\left(\begin{array}{cc}\vec{l}_0&\vec{l}_1\end{array}\right)
\cdot\left(\begin{array}{c}g^l_{\alpha,0}\\g^l_{\alpha,1}\end{array}\right)\f]
Which leads to
\f[\left(\begin{array}{cc}\vec{g}_0&\vec{g}_1\end{array}\right)=
\left(\begin{array}{cc}\vec{l}_0&\vec{l}_1\end{array}\right)
\cdot\left(\begin{array}{cc}g^l_{0,0}&g^l_{0,1}\\g^l_{1,0}&g^l_{1,1}\end{array}\right)\f]
We can plug that into the formula above and identify the things to
the right side of
\f$\left(\begin{array}{cc}\vec{l}_0&\vec{l}_1\end{array}\right)\f$:
\f[\left(\begin{array}{c}x^l_0\\x^l_1\end{array}\right)=
\left(\begin{array}{cc}g^l_{0,0}&g^l_{0,1}\\g^l_{1,0}&g^l_{1,1}\end{array}\right)
\cdot\left(\begin{array}{c}x^g_0\\x^g_1\end{array}\right)\f]
To get back to the general case:
\f[x^l_\alpha=g^l_{\beta,\alpha}\cdot x^g_\beta\f]
So:
\f[\left(J^{-1}\right)_{\alpha,\beta}=g^l_{\beta,\alpha}\f]
To get the inverse Jacobian, we have to take the global unit vectors
\f$g^g_\alpha\f$, tranform them into local coordinates
\f$g^l_\alpha\f$ and use them as rows of the matrix.
*/
const
FieldMatrix
<
ct
,
mydim
,
mydim
>&
jacobianInverse
(
const
FieldVector
<
ct
,
mydim
>&
local
)
const
{
IsTrue
<
(
mydim
==
cdim
)
>::
yes
();
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment