Skip to content
Snippets Groups Projects
Commit 40752c75 authored by Christoph Grüninger's avatar Christoph Grüninger
Browse files

Merge branch 'feature/tuplevector' into 'master'

Add the TupleVector class

The `TupleVector` class is a multitype container without
algebraic operations. It relates to `Dune::MultiTypeBlockVector`
like `std::vector` relates to `Dune::BlockVector`. This is achived
by augmenting `std::tuple` by the following:
* `operator[]` for `Dune::index_constant` arguments
* `static size()`
    
You can now write code like this which will work for multitype
and classic vector like containers:

```c++    
    using namespace Dune::Hybrid;
    forEach(integralRange(size(v)), [&](auto i) {
        v[i] = i;
    });
 ```

Notice that `TupleVector` was already present as implementation detail
of two tests in dune-common and that dune-functions and dune-solvers
also both contained their own variants

See merge request !134
parents 401ad9be 3d5152be
No related branches found
No related tags found
No related merge requests found
......@@ -97,6 +97,7 @@ install(FILES
timer.hh
tuples.hh
tupleutility.hh
tuplevector.hh
typelist.hh
typetraits.hh
typeutilities.hh
......
......@@ -9,50 +9,10 @@
#include <vector>
#include <dune/common/hybridutilities.hh>
#include <dune/common/tuplevector.hh>
#include <dune/common/test/testsuite.hh>
/** \brief A std::tuple that allows access to its element via operator[]
*
* Since there is no heterogeneous container in dune-common that supports
* operator[std::integralconstant<T,i>] we make our own for the test.
*/
template<class... T>
class TupleVector : public std::tuple<T...>
{
using Base = std::tuple<T...>;
public:
using Base::Base;
/** \brief Array-style access to the tuple elements */
template<std::size_t i>
decltype(auto) operator[](const Dune::index_constant<i>&)
{
return std::get<i>(*this);
}
template<std::size_t i>
constexpr decltype(auto) operator[](const Dune::index_constant<i>&) const
{
return std::get<i>(*this);
}
static constexpr auto size()
{
return std::tuple_size<Base>::value;
}
};
template<class... T>
constexpr auto makeTupleVector(T&&... t)
{
// The std::decay_t<T> is is a slight simplification,
// because std::reference_wrapper needs special care.
return TupleVector<std::decay_t<T>...>(std::forward<T>(t)...);
}
template<class C>
auto incrementAll(C&& c)
......@@ -91,7 +51,7 @@ auto incAndAppendToFirst(C&& c)
int main()
{
auto vector = std::vector<int>{1, 2, 3};
auto numberTuple = makeTupleVector(0.1, 2, 3);
auto numberTuple = Dune::makeTupleVector(0.1, 2, 3);
Dune::TestSuite test;
......@@ -100,7 +60,7 @@ int main()
<< "Incrementing vector entries with Hybrid::forEach failed.";
incrementAll(numberTuple);
test.check(numberTuple == makeTupleVector(1.1, 3, 4))
test.check(numberTuple == Dune::makeTupleVector(1.1, 3, 4))
<< "Incrementing tuple entries with Hybrid::forEach failed.";
addIndex(vector);
......@@ -108,13 +68,13 @@ int main()
<< "Adding indices to vector entries with Hybrid::forEach failed.";
addIndex(numberTuple);
test.check(numberTuple == makeTupleVector(1.1, 4, 6))
test.check(numberTuple == Dune::makeTupleVector(1.1, 4, 6))
<< "Adding indices to vector entries with Hybrid::forEach failed.";
auto mixedTuple = makeTupleVector(std::string("1"), 2, 3);
auto mixedTuple = Dune::makeTupleVector(std::string("1"), 2, 3);
incAndAppendToFirst(mixedTuple);
test.check(mixedTuple == makeTupleVector(std::string("1+1"), 3, 4))
test.check(mixedTuple == Dune::makeTupleVector(std::string("1+1"), 3, 4))
<< "Adding indices to vector entries with Hybrid::forEach failed.";
return test.exit();
......
......@@ -7,25 +7,10 @@
#include <tuple>
#include <dune/common/indices.hh>
#include <dune/common/tuplevector.hh>
using namespace Dune;
/** \brief A std::tuple that allows access to its element via operator[]
*
* Helper class to test the static indices with
*/
template<class... T>
struct TupleVector : public std::tuple<T...>
{
/** \brief Array-style access to the tuple elements */
template<std::size_t i>
auto operator[](const index_constant<i>&)
->decltype(std::get<i>(*this))
{
return std::get<i>(*this);
}
};
int main()
......@@ -33,7 +18,7 @@ int main()
using namespace Dune::Indices;
// Test whether indices can be used to index a data structure
TupleVector<int,double,float> v;
Dune::TupleVector<int,double,float> v;
v[_0] = 42;
v[_1] = 3.14;
v[_2] = 2.7;
......
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_COMMON_TUPLEVECTOR_HH
#define DUNE_COMMON_TUPLEVECTOR_HH
#include <tuple>
#include <utility>
#include <dune/common/indices.hh>
/**
* \file
* \brief Provides the TupleVector class that augments std::tuple by operator[]
* \author Carsten Gräser
*/
namespace Dune
{
/**
* \brief A class augmenting std::tuple by element access via operator[]
*
* \ingroup Utilities
*/
template<class... T>
class TupleVector : public std::tuple<T...>
{
using Base = std::tuple<T...>;
public:
/** \brief Construct from a set of arguments
*/
template<class... TT>
constexpr TupleVector(TT&&... tt) :
Base(std::forward<TT>(tt)...)
{}
/** \brief Default constructor
*/
constexpr TupleVector()
{}
/** \brief Const access to the tuple elements
*/
template<std::size_t i>
constexpr decltype(auto) operator[](const Dune::index_constant<i>&) const
{
return std::get<i>(*this);
}
/** \brief Non-const access to the tuple elements
*/
template<std::size_t i>
decltype(auto) operator[](const Dune::index_constant<i>&)
{
return std::get<i>(*this);
}
/** \brief Number of elements of the tuple */
static constexpr std::size_t size()
{
return std::tuple_size<Base>::value;
}
};
template<class... T>
constexpr auto makeTupleVector(T&&... t)
{
// The std::decay_t<T> is is a slight simplification,
// because std::reference_wrapper needs special care.
return TupleVector<std::decay_t<T>...>(std::forward<T>(t)...);
}
} // namespace Dune
#endif // DUNE_COMMON_TUPLEVECTOR_HH
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment