Skip to content
Snippets Groups Projects
Commit e7b07ceb authored by Simon Praetorius's avatar Simon Praetorius
Browse files

Tensor data structure based on mdarray

parent 56807ac0
No related branches found
No related tags found
1 merge request!1433Add Tensor container based on mdarray and a TensorSpan based of mdspan
......@@ -100,6 +100,9 @@ install(FILES
stdthread.hh
streamoperators.hh
stringutility.hh
tensor.hh
tensorinterface.hh
tensorspan.hh
timer.hh
transpose.hh
tupleutility.hh
......
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
// SPDX-FileCopyrightInfo: Copyright © DUNE Project contributors, see file LICENSE.md in module root
// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
#ifndef DUNE_COMMON_INITIALIZER_LIST_HH
#define DUNE_COMMON_INITIALIZER_LIST_HH
#include <cassert>
#include <initializer_list>
namespace Dune {
namespace Impl {
template <class Value, int rank>
struct NestedInitializerList
{
using type = std::initializer_list<typename NestedInitializerList<Value,rank-1>::type>;
};
template <class Value>
struct NestedInitializerList<Value,1>
{
using type = std::initializer_list<Value>;
};
template <class Value>
struct NestedInitializerList<Value,0>
{
using type = Value;
};
} // end namespace Impl
/// \brief A nested `std::initializer_list<std::initializer_list<...>>` up to depth `rank`
template <class Value, int rank>
using NestedInitializerList_t = typename Impl::NestedInitializerList<Value,rank>::type;
/// \brief A utility to recursively unpack nested initializer lists
template <class Value, class Extents, int I = Extents::rank()>
class InitializerList
{
public:
using value_type = Value;
using extents_type = Extents;
template <class F>
static void apply (NestedInitializerList_t<Value,I> values, const extents_type& extents, F&& set_value)
{
assert(values.size() == std::size_t(extents.extent(extents_type::rank()-I)));
// process all the sub lists
for (auto&& sub : values)
InitializerList<value_type,extents_type,I-1>::apply(sub, extents, set_value);
}
};
#ifndef DOXYGEN
template <class Value, class Extents>
class InitializerList<Value,Extents,1>
{
public:
using value_type = Value;
using extents_type = Extents;
template <class F>
static void apply (std::initializer_list<Value> values, const extents_type& extents, F&& set_value)
{
assert(values.size() == std::size_t(extents.extent(extents_type::rank()-1)));
for (auto&& value : values)
set_value(value);
}
};
template <class Value, class Extents>
class InitializerList<Value,Extents,0>
{
public:
using value_type = Value;
using extents_type = Extents;
template <class F>
static void apply (const Value& value, const extents_type& extents, F&& set_value)
{
set_value(value);
}
};
#endif // DOXYGEN
} // end namespace Dune
#endif // DUNE_COMMON_INITIALIZER_LIST_HH
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
// SPDX-FileCopyrightInfo: Copyright © DUNE Project contributors, see file LICENSE.md in module root
// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
#ifndef DUNE_COMMON_TENSOR_HH
#define DUNE_COMMON_TENSOR_HH
#include <array>
#include <type_traits>
#include <vector>
#include <dune/common/initializerlist.hh>
#include <dune/common/tensormixin.hh>
#include <dune/common/tensorspan.hh>
#include <dune/common/std/extents.hh>
#include <dune/common/std/layout_right.hh>
#include <dune/common/std/mdarray.hh>
#include <dune/common/std/span.hh>
namespace Dune {
//! A special value representing dynamic extents in a tensor
static constexpr inline std::size_t dynamic = Std::dynamic_extent;
namespace Impl {
template <class Element, std::size_t... extents>
struct TensorTraits
{
using container_type = std::conditional_t<((extents == Dune::dynamic) || ...),
std::vector<Element>, std::array<Element, (extents * ... * std::size_t(1))>>;
using extents_type = Std::extents<typename container_type::size_type,extents...>;
using storage_type = Std::mdarray<Element, extents_type, Std::layout_right, container_type>;
};
} // end namespace Impl
/**
* \brief A tensor of arbitrary rank and individual dimension extents, static
* or dynamic, storing field values in a container of corresponding static or
* dynamic size.
*
* \ingroup Tensors
* \nosubgrouping
*
* \tparam Element The element type stored in the tensor
* \tparam extents Individual static extents or Dune::dynamic
**/
template <class Element, std::size_t... extents>
class Tensor
: public TensorMixin<Tensor<Element,extents...>,
typename Impl::TensorTraits<Element,extents...>::storage_type>
{
using self_type = Tensor;
using storage_type = typename Impl::TensorTraits<Element,extents...>::storage_type;
using base_type = TensorMixin<self_type, storage_type>;
public:
using element_type = typename base_type::element_type;
using extents_type = typename base_type::extents_type;
using value_type = typename base_type::value_type;
using index_type = typename base_type::index_type;
using layout_type = typename base_type::layout_type;
using mapping_type = typename base_type::mapping_type;
using tensorspan_type = TensorSpan<element_type,extents_type,layout_type>;
using const_tensorspan_type = TensorSpan<const element_type,extents_type,layout_type>;
public:
/// \brief Inherit constructor from TensorMixin
using base_type::base_type;
/// \name Additional Tensor constructors
/// @{
explicit constexpr Tensor (const value_type& value)
: base_type{extents_type{}, value}
{}
/**
* \brief Constructor from a brace-init list of values
*
* \b Example:
* \code{.cpp}
Tensor<double,2,2> matrix{
{1.0,2.0},
{2.0, 3.0}
};
* \endcode
**/
template <class E = extents_type,
std::enable_if_t<(E::rank_dynamic() == 0), int> = 0,
std::enable_if_t<std::is_default_constructible_v<E>, int> = 0>
constexpr Tensor (NestedInitializerList_t<value_type,extents_type::rank()> init)
: Tensor{extents_type{}, init}
{}
/**
* \brief Constructor from an extents and brace-init list of values
*
* \b Example:
* \code{.cpp}
using Extents = typename Tensor<double,dynamic,dynamic>::extents_type;
Tensor<double,dynamic,dynamic> matrix(Extents{2,2},
{
{1.0,2.0},
{2.0, 3.0}
});
* \endcode
**/
template <class M = mapping_type,
std::enable_if_t<std::is_constructible_v<M,extents_type>, int> = 0>
constexpr Tensor (const extents_type& e, NestedInitializerList_t<value_type,extents_type::rank()> init)
: Tensor{mapping_type{e}, init}
{}
/**
* \brief Constructor from a span of extents and brace-init list of values
*
* \b Example:
* \code{.cpp}
Tensor<double,dynamic,dynamic> matrix(std::array{2,2},
{
{1.0,2.0},
{2.0, 3.0}
});
* \endcode
**/
template <class Otherindex_type, std::size_t N,
std::enable_if_t<std::is_convertible_v<const Otherindex_type&, index_type>, int> = 0,
std::enable_if_t<std::is_nothrow_constructible_v<index_type,const Otherindex_type&>, int> = 0,
std::enable_if_t<(N == extents_type::rank_dynamic() || N == extents_type::rank()), int> = 0>
constexpr Tensor (Std::span<Otherindex_type,N> e,
NestedInitializerList_t<value_type,extents_type::rank()> init)
: Tensor{mapping_type{extents_type{e}}, init}
{}
/**
* \brief Constructor from a layout-mapping and brace-init list of values
*
* \b Example:
* \code{.cpp}
using Extents = typename Tensor<double,dynamic,dynamic>::extents_type;
using Mapping = typename Tensor<double,dynamic,dynamic>::mapping_type;
Tensor<double,dynamic,dynamic> matrix(Mapping{Extents{2,2}},
{
{1.0,2.0},
{2.0, 3.0}
});
* \endcode
**/
constexpr Tensor (const mapping_type& m, NestedInitializerList_t<value_type,extents_type::rank()> init)
: base_type{m}
{
auto it = this->container_data();
InitializerList<value_type,extents_type>::apply(init,this->extents(),
[&it](value_type value) { *it++ = value; });
}
/// \brief Converting constructor from another TensorMixin
template <class D, class B,
std::enable_if_t<std::is_constructible_v<base_type, B>, int> = 0>
constexpr Tensor (const TensorMixin<D,B>& other)
: base_type{Std::mdspan(other)}
{}
/// @}
/// \name Multi index access
/// @{
/**
* \brief Subscript operator to access the tensor components using an array of indices.
* \b Examples:
* \code{c++}
Tensor<double,3,3> matrix;
matrix[std::array{0,1}] = 7.0;
\endcode
**/
using base_type::operator[];
/**
* \brief Access an element of the tensor using a variadic list of indices.
* \b Examples:
* \code{c++}
Tensor<double,3,3,3> tensor;
tensor(0,1,2) = 42.0;
\endcode
**/
using base_type::operator();
/// @}
/// \name Modifiers
/// @{
/// \brief Change the extents of the tensor and resize the underlying container with given default value
template <class V,
std::enable_if_t<std::is_convertible_v<V,value_type>, int> = 0>
void resize (const extents_type& e, const V& value)
{
auto container = std::move(*this).extract_container();
auto m = mapping_type{e};
container.resize(m.required_span_size(), value);
static_cast<base_type&>(*this) = base_type{m, std::move(container)};
}
/// \brief Change the extents of the tensor and resize the underlying container
void resize (const extents_type& e)
{
resize(e, value_type(0));
}
/// \brief Change the extents of the tensor by the given individual extents
template <class... index_types, class V,
std::enable_if_t<(sizeof...(index_types) == extents_type::rank() ||
sizeof...(index_types) == extents_type::rank_dynamic()), int> = 0,
std::enable_if_t<(... && std::is_convertible_v<index_types,index_type>), int> = 0,
std::enable_if_t<std::is_constructible_v<extents_type,index_types...>, int> = 0,
std::enable_if_t<std::is_convertible_v<V,value_type>, int> = 0>
void resize (index_types... exts, const V& v)
{
resize(extents_type{exts...}, v);
}
/// \brief Change the extents of the tensor by the given individual extents
template <class... index_types,
std::enable_if_t<(sizeof...(index_types) == extents_type::rank() ||
sizeof...(index_types) == extents_type::rank_dynamic()), int> = 0,
std::enable_if_t<(... && std::is_convertible_v<index_types,index_type>), int> = 0,
std::enable_if_t<std::is_constructible_v<extents_type,index_types...>, int> = 0>
void resize (index_types... exts)
{
resize(extents_type{exts...}, value_type(0));
}
/// @}
/// \name Conversion into mdspan
/// @{
/// \brief Conversion operator to TensorSpan
template <class V, class E, class L, class A,
std::enable_if_t<std::is_assignable_v<TensorSpan<V,E,L,A>, tensorspan_type>, int> = 0>
constexpr operator TensorSpan<V,E,L,A> ()
{
return tensorspan_type(this->container_data(), this->mapping());
}
/// \brief Conversion operator to TensorSpan
template <class V, class E, class L, class A,
std::enable_if_t<std::is_assignable_v<TensorSpan<V,E,L,A>, const_tensorspan_type>, int> = 0>
constexpr operator TensorSpan<V,E,L,A> () const
{
return const_tensorspan_type(this->container_data(), this->mapping());
}
/// \brief Conversion function to TensorSpan
template <class A = Std::default_accessor<element_type>,
std::enable_if_t<
std::is_assignable_v<tensorspan_type, TensorSpan<element_type,extents_type,layout_type,A>>, int> = 0>
constexpr TensorSpan<element_type,extents_type,layout_type,A>
toTensorSpan (const A& accessor = A{})
{
return TensorSpan<element_type,extents_type,layout_type,A>(this->container_data(), this->mapping(), accessor);
}
/// \brief Conversion function to TensorSpan
template <class A = Std::default_accessor<const element_type>,
std::enable_if_t<
std::is_assignable_v<const_tensorspan_type, TensorSpan<const element_type,extents_type,layout_type,A>>, int> = 0>
constexpr TensorSpan<const element_type,extents_type,layout_type,A>
toTensorSpan (const A& accessor = A{}) const
{
return TensorSpan<const element_type,extents_type,layout_type,A>(this->container_data(), this->mapping(), accessor);
}
/// @}
};
namespace Impl {
template <class M>
using IsLayoutMapping = std::is_same<M,
typename M::layout_type::template mapping<typename M::extents_type>>;
template <class V, class E>
struct TensorFromExtents;
template <class V, class I, std::size_t... exts>
struct TensorFromExtents<V, Dune::Std::extents<I, exts...>>
{
using type = Dune::Tensor<V, exts...>;
};
} // end namespace Impl
/// \name Deduction guides
/// \relates Tensor
/// @{
template <class index_type, std::size_t... exts, class value_type>
Tensor (Std::extents<index_type, exts...>, value_type)
-> Tensor<value_type, exts...>;
template <class Mapping, class value_type,
std::enable_if_t<Impl::IsLayoutMapping<Mapping>::value, int> = 0,
std::enable_if_t<(Mapping::extents_type::rank() == 0), int> = 0>
Tensor (Mapping, value_type)
-> Tensor<value_type>;
template <class Mapping, class value_type,
std::enable_if_t<Impl::IsLayoutMapping<Mapping>::value, int> = 0,
std::enable_if_t<(Mapping::extents_type::rank() == 1), int> = 0>
Tensor (Mapping, value_type)
-> Tensor<value_type, Mapping::extents_type::static_extent(0)>;
template <class Mapping, class value_type,
std::enable_if_t<Impl::IsLayoutMapping<Mapping>::value, int> = 0,
std::enable_if_t<(Mapping::extents_type::rank() == 2), int> = 0>
Tensor (Mapping, value_type)
-> Tensor<value_type,
Mapping::extents_type::static_extent(0),
Mapping::extents_type::static_extent(1)>;
template <class Mapping, class value_type,
std::enable_if_t<Impl::IsLayoutMapping<Mapping>::value, int> = 0,
std::enable_if_t<(Mapping::extents_type::rank() == 3), int> = 0>
Tensor (Mapping, value_type)
-> Tensor<value_type,
Mapping::extents_type::static_extent(0),
Mapping::extents_type::static_extent(1),
Mapping::extents_type::static_extent(2)>;
template <class index_type, std::size_t... exts, class value_type, class Alloc>
Tensor (Std::extents<index_type, exts...>, value_type, const Alloc&)
-> Tensor<value_type, exts...>;
template <class Mapping, class value_type, class Alloc,
std::enable_if_t<Impl::IsLayoutMapping<Mapping>::value, int> = 0,
std::enable_if_t<(Mapping::extents_type::rank() == 0), int> = 0>
Tensor (Mapping, value_type, const Alloc&)
-> Tensor<value_type>;
template <class Mapping, class value_type, class Alloc,
std::enable_if_t<Impl::IsLayoutMapping<Mapping>::value, int> = 0,
std::enable_if_t<(Mapping::extents_type::rank() == 1), int> = 0>
Tensor (Mapping, value_type, const Alloc&)
-> Tensor<value_type, Mapping::extents_type::static_extent(0)>;
template <class Mapping, class value_type, class Alloc,
std::enable_if_t<Impl::IsLayoutMapping<Mapping>::value, int> = 0,
std::enable_if_t<(Mapping::extents_type::rank() == 2), int> = 0>
Tensor (Mapping, value_type, const Alloc&)
-> Tensor<value_type,
Mapping::extents_type::static_extent(0),
Mapping::extents_type::static_extent(1)>;
template <class Mapping, class value_type, class Alloc,
std::enable_if_t<Impl::IsLayoutMapping<Mapping>::value, int> = 0,
std::enable_if_t<(Mapping::extents_type::rank() == 3), int> = 0>
Tensor (Mapping, value_type, const Alloc&)
-> Tensor<value_type,
Mapping::extents_type::static_extent(0),
Mapping::extents_type::static_extent(1),
Mapping::extents_type::static_extent(2)>;
template <class V, class I, std::size_t... exts, class L, class C>
Tensor (Std::mdarray<V,Dune::Std::extents<I,exts...>,L,C>)
-> Tensor<V, exts...>;
template <class V, class I, std::size_t... exts, class L, class C>
Tensor (Std::mdspan<V,Dune::Std::extents<I,exts...>,L,C>)
-> Tensor<std::remove_cv_t<V>, exts...>;
/// @}
template <class V, std::size_t... exts>
struct FieldTraits< Tensor<V,exts...> >
{
using field_type = typename FieldTraits<V>::field_type;
using real_type = typename FieldTraits<V>::real_type;
};
} // end namespace Dune
#endif // DUNE_COMMON_TENSOR_HH
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
// SPDX-FileCopyrightInfo: Copyright © DUNE Project contributors, see file LICENSE.md in module root
// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
#ifndef DUNE_COMMON_TENSORMIXIN_HH
#define DUNE_COMMON_TENSORMIXIN_HH
#include <cassert>
#include <stdexcept>
#include <type_traits>
#include <utility>
#include <dune/common/ftraits.hh>
#include <dune/common/indices.hh>
#include <dune/common/std/type_traits.hh>
namespace Dune {
/**
* \brief A tensor interface-class providing common functionality.
* \nosubgrouping
*
* The CRTP interface mixin-class for tensors extends the mdarray and mdspan implementations
* by common functionality for element access and size information and mathematical
* operations.
*
* \tparam Derived The tensor type derived from this class.
* \tparam Base Either mdarray or mdspan base type for storage.
**/
template <class Derived, class Base>
class TensorMixin
: public Base
{
using self_type = TensorMixin;
using derived_type = Derived;
using base_type = Base;
template <class B>
using const_reference_t = typename B::const_reference;
public:
using element_type = typename base_type::element_type;
using value_type = std::remove_const_t<element_type>;
using extents_type = typename base_type::extents_type;
using index_type = typename base_type::index_type;
using layout_type = typename base_type::layout_type;
using mapping_type = typename base_type::mapping_type;
using reference = typename base_type::reference;
using const_reference = Std::detected_or_t<reference,const_reference_t,base_type>;
protected:
/// Derive constructors from base class
using base_type::base_type;
/// \brief base copy constructor
constexpr TensorMixin (const base_type& tensor)
: base_type{tensor}
{}
/// \brief base move constructor
constexpr TensorMixin (base_type&& tensor)
: base_type{std::move(tensor)}
{}
public:
/// \name Multi index access
/// @{
/// \brief Access specified element at position (i0,i1,...) with mutable access
template <class... Indices,
std::enable_if_t<(sizeof...(Indices) == extents_type::rank()), int> = 0,
std::enable_if_t<(... && std::is_convertible_v<Indices, index_type>), int> = 0>
constexpr reference operator() (Indices... indices)
{
return base_type::operator[](std::array<index_type,extents_type::rank()>{index_type(indices)...});
}
/// \brief Access specified element at position (i0,i1,...) with const access
template <class... Indices,
std::enable_if_t<(sizeof...(Indices) == extents_type::rank()), int> = 0,
std::enable_if_t<(... && std::is_convertible_v<Indices, index_type>), int> = 0>
constexpr const_reference operator() (Indices... indices) const
{
return base_type::operator[](std::array<index_type,extents_type::rank()>{index_type(indices)...});
}
/**
* \brief Access specified element at position (i0,i1,...) with mutable access
* \throws std::out_of_range if the indices are out of the index space `[0,extent_0)x...x[0,extent_{r-1})`.
*/
template <class... Indices,
std::enable_if_t<(sizeof...(Indices) == extents_type::rank()), int> = 0,
std::enable_if_t<(... && std::is_convertible_v<Indices, index_type>), int> = 0>
constexpr reference at (Indices... indices)
{
if (not indexInIndexSpace(indices...))
throw std::out_of_range("Indices out of index space");
return base_type::operator[](std::array<index_type,extents_type::rank()>{index_type(indices)...});
}
/**
* \brief Access specified element at position (i0,i1,...) with const access
* \throws std::out_of_range if the indices are out of the index space `[0,extent_0)x...x[0,extent_{r-1})`.
*/
template <class... Indices,
std::enable_if_t<(sizeof...(Indices) == extents_type::rank()), int> = 0,
std::enable_if_t<(... && std::is_convertible_v<Indices, index_type>), int> = 0>
constexpr const_reference at (Indices... indices) const
{
if (not indexInIndexSpace(indices...))
throw std::out_of_range("Indices out of index space");
return base_type::operator[](std::array<index_type,extents_type::rank()>{index_type(indices)...});
}
/// \brief Access element at position [{i0,i1,...}]
template <class Index,
std::enable_if_t<std::is_convertible_v<const Index&, index_type>, int> = 0>
constexpr reference operator[] (const std::array<Index,extents_type::rank()>& indices)
{
return base_type::operator[](indices);
}
/// \brief Access element at position [{i0,i1,...}]
template <class Index,
std::enable_if_t<std::is_convertible_v<const Index&, index_type>, int> = 0>
constexpr const_reference operator[] (const std::array<Index,extents_type::rank()>& indices) const
{
return base_type::operator[](indices);
}
/// \brief Access vector-element at position [i0] with mutable access.
template <class E = extents_type,
std::enable_if_t<(E::rank() == 1), int> = 0>
constexpr reference operator[] (index_type index) noexcept
{
return base_type::operator[](std::array{index});
}
/// \brief Access vector-element at position [i0] with const access.
template <class E = extents_type,
std::enable_if_t<(E::rank() == 1), int> = 0>
constexpr const_reference operator[] (index_type index) const noexcept
{
return base_type::operator[](std::array{index});
}
/**
* \brief Return true when (i0,i1,...) is in pattern.
* This is always true for dense tensors.
**/
template <class... Indices,
std::enable_if_t<(sizeof...(Indices) == extents_type::rank()), int> = 0,
std::enable_if_t<(... && std::is_convertible_v<Indices, index_type>), int> = 0>
constexpr bool exists (Indices... indices) const noexcept
{
return indexInIndexSpace(indices...);
}
/// @}
/// \name Size information
/// @{
/// \brief Number of rows of a rank-2 tensor
template <class E = extents_type,
std::enable_if_t<(E::rank() == 2), int> = 0>
constexpr index_type rows () const noexcept
{
return asBase().extent(0);
}
/// \brief Number of columns of a rank-2 tensor
template <class E = extents_type,
std::enable_if_t<(E::rank() == 2), int> = 0>
constexpr index_type cols () const noexcept
{
return asBase().extent(1);
}
/// @}
/// \name Conversion to the underlying value if rank is zero
// @{
template <class ScalarType, class E = extents_type,
std::enable_if_t<std::is_convertible_v<value_type,ScalarType>, int> = 0,
std::enable_if_t<(E::rank() == 0), int> = 0>
constexpr operator ScalarType () const noexcept
{
return ScalarType(base_type::operator[](std::array<index_type,0>{}));
}
/// @}
/// \brief Comparison of two TensorMixins for equality
friend constexpr bool operator== (const TensorMixin& lhs, const TensorMixin& rhs) noexcept
{
return static_cast<const base_type&>(lhs) == static_cast<const base_type&>(rhs);
}
private:
// Check whether a tuple of indices is in the index space `[0,extent_0)x...x[0,extent_{r-1})`.
template <class... Indices>
[[nodiscard]] constexpr bool indexInIndexSpace (Indices... indices) const noexcept
{
return unpackIntegerSequence([&](auto... i) {
return ( (0 <= indices && index_type(indices) < asBase().extent(i)) && ... );
}, std::make_index_sequence<sizeof...(Indices)>{});
}
private:
derived_type const& asDerived () const
{
return static_cast<derived_type const&>(*this);
}
derived_type& asDerived ()
{
return static_cast<derived_type&>(*this);
}
base_type const& asBase () const
{
return static_cast<base_type const&>(*this);
}
base_type& asBase ()
{
return static_cast<base_type&>(*this);
}
};
// specialization for rank-0 tensor and comparison with scalar
template <class D, class B, class V, class E = typename B::extents_type,
std::enable_if_t<(E::rank() == 0), int> = 0,
std::enable_if_t<std::is_convertible_v<V, typename B::value_type>, int> = 0,
std::enable_if_t<std::is_constructible_v<typename B::value_type, V>, int> = 0>
constexpr bool operator== (const TensorMixin<D,B>& lhs, const V& rhs) noexcept
{
return lhs() == rhs;
}
// specialization for rank-0 tensor and comparison with scalar
template <class V, class D, class B, class E = typename B::extents_type,
std::enable_if_t<(E::rank() == 0), int> = 0,
std::enable_if_t<std::is_convertible_v<V, typename B::value_type>, int> = 0,
std::enable_if_t<std::is_constructible_v<typename B::value_type, V>, int> = 0>
constexpr bool operator== (const V& lhs, const TensorMixin<D,B>& rhs) noexcept
{
return lhs == rhs();
}
template <class D, class B>
struct FieldTraits< TensorMixin<D,B> >
{
using field_type = typename FieldTraits<D>::field_type;
using real_type = typename FieldTraits<D>::real_type;
};
} // end namespace Dune
#endif // DUNE_COMMON_TENSORMIXIN_HH
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
// SPDX-FileCopyrightInfo: Copyright © DUNE Project contributors, see file LICENSE.md in module root
// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
#ifndef DUNE_COMMON_TENSORSPAN_HH
#define DUNE_COMMON_TENSORSPAN_HH
#include <array>
#include <type_traits>
#include <dune/common/ftraits.hh>
#include <dune/common/tensormixin.hh>
#include <dune/common/std/default_accessor.hh>
#include <dune/common/std/extents.hh>
#include <dune/common/std/layout_right.hh>
#include <dune/common/std/mdspan.hh>
namespace Dune {
/**
* \brief A multi-dimensional span with tensor interface.
* \nosubgrouping
*
* \tparam Element The element type stored in the tensor.
* \tparam Extents The type representing the tensor extents. Must be compatible
* to `Dune::Std::extents`.
* \tparam Layout A class providing the index mapping from the multi-dimensional
* index space to a single index usable in the `Container`. See
* the `Dune::Concept::Layout` concept.
* \tparam Accessor A class that defines types and operations to create a reference
* to a single element stored by a data pointer and index.
**/
template <class Element, class Extents,
class Layout = Std::layout_right,
class Accessor= Std::default_accessor<Element>>
class TensorSpan
: public TensorMixin<TensorSpan<Element,Extents,Layout,Accessor>,
Std::mdspan<Element,Extents,Layout,Accessor>>
{
using self_type = TensorSpan;
using storage_type = Std::mdspan<Element,Extents,Layout,Accessor>;
using base_type = TensorMixin<self_type,storage_type>;
public:
using element_type = Element;
using extents_type = Extents;
using layout_type = Layout;
using accessor_type = Accessor;
using mapping_type = typename base_type::mapping_type;
public:
/// \name TensorSpan constructors
/// @{
using base_type::base_type;
/// \brief Converting constructor
template <class V, class E, class L, class A,
class M = typename L::template mapping<E>,
std::enable_if_t<std::is_constructible_v<mapping_type, const M&>, int> = 0,
std::enable_if_t<std::is_constructible_v<accessor_type, const A&>, int> = 0>
constexpr TensorSpan (const TensorSpan<V,E,L,A>& other)
: base_type{other}
{}
/// \brief Converting move constructor
template <class V, class E, class L, class A,
class M = typename L::template mapping<E>,
std::enable_if_t<std::is_constructible_v<mapping_type, const M&>, int> = 0,
std::enable_if_t<std::is_constructible_v<accessor_type, const A&>, int> = 0>
constexpr TensorSpan (TensorSpan<V,E,L,A>&& tensor)
: base_type{std::move(tensor)}
{}
/// \brief base copy constructor
constexpr TensorSpan (const storage_type& tensor)
: base_type{tensor}
{}
/// \brief base move constructor
constexpr TensorSpan (storage_type&& tensor)
: base_type{std::move(tensor)}
{}
/// @}
};
// deduction guides
// @{
template <class CArray,
std::enable_if_t<std::is_array_v<CArray>, int> = 0,
std::enable_if_t<(std::rank_v<CArray> == 1), int> = 0>
TensorSpan (CArray&)
-> TensorSpan<std::remove_all_extents_t<CArray>, Std::extents<std::size_t, std::extent_v<CArray,0>>>;
template <class Pointer,
std::enable_if_t<std::is_pointer_v<std::remove_reference_t<Pointer>>, int> = 0>
TensorSpan (Pointer&&)
-> TensorSpan<std::remove_pointer_t<std::remove_reference_t<Pointer>>, Std::extents<std::size_t>>;
template <class element_type, class... II,
std::enable_if_t<(... && std::is_convertible_v<II,std::size_t>), int> = 0,
std::enable_if_t<(sizeof...(II) > 0), int> = 0>
TensorSpan (element_type*, II...)
-> TensorSpan<element_type, Std::dextents<std::size_t, sizeof...(II)>>;
template <class element_type, class SizeType, std::size_t N>
TensorSpan (element_type*, Std::span<SizeType,N>&)
-> TensorSpan<element_type, Std::dextents<std::size_t, N>>;
template <class element_type, class SizeType, std::size_t N>
TensorSpan (element_type*, const std::array<SizeType,N>&)
-> TensorSpan<element_type, Std::dextents<std::size_t, N>>;
template <class element_type, class IndexType, std::size_t... exts>
TensorSpan (element_type*, const Std::extents<IndexType,exts...>&)
-> TensorSpan<element_type, Std::extents<IndexType,exts...>>;
template <class element_type, class Mapping,
class Extents = typename Mapping::extents_type,
class Layout = typename Mapping::layout_type>
TensorSpan (element_type*, const Mapping&)
-> TensorSpan<element_type, Extents, Layout>;
template <class Mapping, class Accessor,
class DataHandle = typename Accessor::data_handle_type,
class Element = typename Accessor::element_type,
class Extents = typename Mapping::extents_type,
class Layout = typename Mapping::layout_type>
TensorSpan (const DataHandle&, const Mapping&, const Accessor&)
-> TensorSpan<Element, Extents, Layout, Accessor>;
template <class V, class E, class L, class A>
TensorSpan (Std::mdspan<V,E,L,A>)
-> TensorSpan<V,E,L,A>;
/// @}
template <class Element, class Extents, class Layout, class Accessor>
struct FieldTraits< TensorSpan<Element,Extents,Layout,Accessor> >
{
using field_type = typename FieldTraits<Element>::field_type;
using real_type = typename FieldTraits<Element>::real_type;
};
} // end namespace Dune
#endif // DUNE_COMMON_TENSORSPAN_HH
......@@ -127,6 +127,10 @@ dune_add_test(SOURCES dunethrowtest.cc
dune_add_test(SOURCES dynmatrixtest.cc
LABELS quick)
dune_add_test(SOURCES dyntensortest.cc
LINK_LIBRARIES dunecommon
LABELS quick)
dune_add_test(SOURCES dynvectortest.cc
LABELS quick)
......@@ -146,6 +150,9 @@ add_dune_vc_flags(fmatrixtest)
dune_add_test(SOURCES forceinlinetest.cc
LABELS quick)
dune_add_test(SOURCES ftensortest.cc
LABELS quick)
dune_add_test(SOURCES fvectortest.cc
LABELS quick)
......
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
// SPDX-FileCopyrightInfo: Copyright © DUNE Project contributors, see file LICENSE.md in module root
// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
#include <array>
#include <dune/common/filledarray.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <dune/common/hybridutilities.hh>
#include <dune/common/tensor.hh>
#include <dune/common/tensorspan.hh>
#include <dune/common/parallel/mpihelper.hh>
#include <dune/common/test/testsuite.hh>
#include <dune/common/test/foreachindex.hh>
#include <type_traits>
using namespace Dune;
template <class Tensor1, class Tensor2>
void checkEqual(Dune::TestSuite& testSuite, Tensor1 const& a, Tensor2 const& b)
{
Dune::TestSuite subTestSuite("checkEqual");
subTestSuite.require(a.extents() == b.extents());
Dune::forEachIndex(a.extents(), [&](auto index) {
subTestSuite.check(a[index] == b[index]);
});
testSuite.subTest(subTestSuite);
}
template <class Tensor>
void checkEqualValue(Dune::TestSuite& testSuite, Tensor const& a, typename Tensor::value_type const& value)
{
Dune::TestSuite subTestSuite("checkEqualValue");
Dune::forEachIndex(a.extents(), [&](auto index) {
subTestSuite.check(a[index] == value);
});
testSuite.subTest(subTestSuite);
}
template <class Tensor>
void checkConstructors(Dune::TestSuite& testSuite)
{
Dune::TestSuite subTestSuite("checkConstructors");
using T = typename Tensor::element_type;
using extents_type = typename Tensor::extents_type;
extents_type ext{Dune::filledArray<Tensor::rank()>(3)};
// default constructor
Tensor tensor0;
subTestSuite.check(tensor0.size() == 0 || tensor0.rank() == 0);
Tensor tensor(ext);
checkEqualValue(subTestSuite, tensor, T(0));
if constexpr(Tensor::rank() > 0) {
tensor0.resize(ext, T(0));
subTestSuite.check(tensor0.size() == tensor.size());
}
#if 0 // not yet implemented
tensor = 1.0;
checkEqualValue(subTestSuite, tensor, 1.0);
#endif
// constructor with a default value
Tensor tensor1(ext, T(1));
checkEqualValue(subTestSuite, tensor1, T(1));
// copy/move constructors
Tensor tensor2{tensor1};
checkEqual(subTestSuite, tensor1,tensor2);
Tensor tensor3 = tensor1;
checkEqual(subTestSuite, tensor1,tensor3);
Tensor tensor4{std::move(tensor2)};
checkEqual(subTestSuite, tensor1,tensor4);
Tensor tensor5 = std::move(tensor3);
checkEqual(subTestSuite, tensor1,tensor5);
// copy/move assignment operators
tensor4 = tensor1;
checkEqual(subTestSuite, tensor1,tensor4);
tensor5 = std::move(tensor4);
checkEqual(subTestSuite, tensor1,tensor5);
extents_type ext2{Dune::filledArray<Tensor::rank()>(2)};
if constexpr(Tensor::rank() == 1) {
if constexpr (std::is_floating_point_v<T>) {
Tensor tensor6(ext2, {6,7});
subTestSuite.check(tensor6(0) == T(6.0));
subTestSuite.check(tensor6(1) == T(7.0));
}
Tensor tensor7{ext2, {T(6.0),T(7.0)}};
subTestSuite.check(tensor7(0) == T(6.0));
subTestSuite.check(tensor7(1) == T(7.0));
}
else
if constexpr(Tensor::rank() == 2) {
if constexpr (std::is_floating_point_v<T>) {
Tensor tensor6(ext2, {{6,7},{8,9}});
subTestSuite.check(tensor6(0,0) == T(6.0));
subTestSuite.check(tensor6(0,1) == T(7.0));
subTestSuite.check(tensor6(1,0) == T(8.0));
subTestSuite.check(tensor6(1,1) == T(9.0));
}
Tensor tensor7(ext2, {{T(6.0),T(7.0)},{T(8.0),T(9.0)}});
Tensor tensor8a(std::array<int,2>{2,2}, {{T(6.0),T(7.0)},{T(8.0),T(9.0)}});
Tensor tensor8b(std::array<unsigned int,2>{2u,2u}, {{T(6.0),T(7.0)},{T(8.0),T(9.0)}});
subTestSuite.check(tensor7(0,0) == T(6.0));
subTestSuite.check(tensor7(0,1) == T(7.0));
subTestSuite.check(tensor7(1,0) == T(8.0));
subTestSuite.check(tensor7(1,1) == T(9.0));
}
Tensor tensor9(tensor1.toTensorSpan());
{ // check deduction guides
Dune::Tensor t1{tensor1.extents(), T{}};
Dune::Tensor t2{tensor1.mapping(), T{}};
Dune::Tensor t3{tensor1.toTensorSpan()};
}
testSuite.subTest(subTestSuite);
}
template <class Tensor>
void checkAccess(Dune::TestSuite& testSuite)
{
Dune::TestSuite subTestSuite("checkAccess");
using T = typename Tensor::element_type;
using extents_type = typename Tensor::extents_type;
using index_type = typename Tensor::index_type;
extents_type ext{Dune::filledArray<Tensor::rank()>(3)};
Tensor tensor(ext, T(42.0));
checkEqualValue(subTestSuite, tensor, T(42.0));
if constexpr(Tensor::rank() == 0) {
subTestSuite.check(tensor[std::array<std::size_t,0>{}] == T(42.0));
subTestSuite.check(tensor() == T(42.0));
subTestSuite.check(tensor.at() == T(42.0));
subTestSuite.check(tensor == T(42.0));
double value = tensor;
subTestSuite.check(value == T(42.0));
}
else if constexpr(Tensor::rank() == 1) {
for (index_type i = 0; i < tensor.extent(0); ++i) {
subTestSuite.check(tensor[std::array{i}] == T(42.0));
subTestSuite.check(tensor[i] == T(42.0));
subTestSuite.check(tensor(i) == T(42.0));
subTestSuite.check(tensor.at(i) == T(42.0));
}
}
else if constexpr(Tensor::rank() == 2) {
for (index_type i = 0; i < tensor.extent(0); ++i) {
for (index_type j = 0; j < tensor.extent(1); ++j) {
subTestSuite.check(tensor[std::array{i,j}] == T(42.0));
subTestSuite.check(tensor(i,j) == T(42.0));
subTestSuite.check(tensor.at(i,j) == T(42.0));
}
}
}
else if constexpr(Tensor::rank() == 3) {
for (index_type i = 0; i < tensor.extent(0); ++i) {
for (index_type j = 0; j < tensor.extent(1); ++j) {
for (index_type k = 0; k < tensor.extent(2); ++k) {
subTestSuite.check(tensor[std::array{i,j,k}] == T(42.0));
subTestSuite.check(tensor(i,j,k) == T(42.0));
subTestSuite.check(tensor.at(i,j,k) == T(42.0));
}
}
}
}
testSuite.subTest(subTestSuite);
}
template <class Tensor>
void checkArithmetic(Dune::TestSuite& testSuite)
{
Dune::TestSuite subTestSuite("checkArithmetic");
using T = typename Tensor::element_type;
using extents_type = typename Tensor::extents_type;
extents_type ext{Dune::filledArray<Tensor::rank()>(3)};
Tensor tensor(ext, T(1));
Tensor tensor2(ext, T(2));
checkEqualValue(subTestSuite, tensor, T(1));
checkEqualValue(subTestSuite, tensor2, T(2));
#if 0 // not yet implemented
if constexpr(std::is_floating_point_v<T>) {
tensor *= 2.0;
checkEqualValue(subTestSuite, tensor, T(2));
tensor += tensor2;
checkEqualValue(subTestSuite, tensor, T(4));
tensor.axpy(4.0, tensor2); // 12
checkEqualValue(subTestSuite, tensor, T(12));
tensor.aypx(4.0, tensor2); // 50
checkEqualValue(subTestSuite, tensor, T(50.0));
tensor -= tensor2;
checkEqualValue(subTestSuite, tensor, T(48.0));
}
#endif
testSuite.subTest(subTestSuite);
}
int main(int argc, char** argv)
{
MPIHelper::instance(argc, argv);
TestSuite testSuite;
using Tensor0 = Dune::Tensor<double>;
using Tensor1 = Dune::Tensor<double,Dune::dynamic>;
using Tensor2 = Dune::Tensor<double,Dune::dynamic,Dune::dynamic>;
using Tensor3 = Dune::Tensor<double,Dune::dynamic,Dune::dynamic,Dune::dynamic>;
// using Tensor4 = Dune::Tensor<bool,Dune::dynamic>;
// using Tensor5 = Dune::Tensor<bool,Dune::dynamic,Dune::dynamic>;
checkConstructors<Tensor0>(testSuite);
checkConstructors<Tensor1>(testSuite);
checkConstructors<Tensor2>(testSuite);
checkConstructors<Tensor3>(testSuite);
// checkConstructors<Tensor4>(testSuite);
// checkConstructors<Tensor5>(testSuite);
checkAccess<Tensor0>(testSuite);
checkAccess<Tensor1>(testSuite);
checkAccess<Tensor2>(testSuite);
checkAccess<Tensor3>(testSuite);
// checkAccess<Tensor4>(testSuite);
// checkAccess<Tensor5>(testSuite);
checkArithmetic<Tensor0>(testSuite);
checkArithmetic<Tensor1>(testSuite);
checkArithmetic<Tensor2>(testSuite);
checkArithmetic<Tensor3>(testSuite);
// checkArithmetic<Tensor4>(testSuite);
// checkArithmetic<Tensor5>(testSuite);
return testSuite.exit();
}
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
// SPDX-FileCopyrightInfo: Copyright © DUNE Project contributors, see file LICENSE.md in module root
// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
#ifndef DUNE_COMMON_TEST_FOREACHINDEX_HH
#define DUNE_COMMON_TEST_FOREACHINDEX_HH
#include <array>
#include <functional>
#include <type_traits>
#include <utility>
#include <dune/common/std/extents.hh>
#include <dune/common/std/span.hh>
#include <dune/common/std/functional.hh>
namespace Dune {
namespace Impl {
template <class Extents, class Fun, class... Indices>
inline __attribute__((always_inline))
void forEachIndexImpl (const Extents& extents, Fun f, Indices... ii)
{
constexpr typename Extents::rank_type pos = sizeof...(Indices);
if constexpr(pos < Extents::rank()) {
if constexpr(Extents::static_extent(pos) == Std::dynamic_extent)
for (typename Extents::index_type i = 0; i < extents.extent(pos); ++i)
forEachIndexImpl(extents, std::move(f), ii...,i);
else
for (std::size_t i = 0; i < Extents::static_extent(pos); ++i)
forEachIndexImpl(extents, std::move(f), ii...,typename Extents::index_type(i));
}
else {
using I = std::array<typename Extents::index_type,Extents::rank()>;
std::invoke(f, I{ii...});
}
}
} // end namespace Impl
/// \brief Invoke the function `f` on all index-tuples in the multi dimensional index-space given by `extents`.
template <class Extents, class Fun,
class I = std::array<typename Extents::index_type,Extents::rank()>,
std::enable_if_t<std::is_invocable_v<Fun,I>, int> = 0>
inline __attribute__((always_inline))
void forEachIndex (const Extents& extents, Fun f)
{
Impl::forEachIndexImpl(extents, std::move(f));
}
} // end namespace Dune
#endif // DUNE_COMMON_TEST_FOREACHINDEX_HH
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
// SPDX-FileCopyrightInfo: Copyright © DUNE Project contributors, see file LICENSE.md in module root
// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
#include <iostream>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <dune/common/tensor.hh>
#include <dune/common/hybridutilities.hh>
#include <dune/common/parallel/mpihelper.hh>
#include <dune/common/test/foreachindex.hh>
#include <dune/common/test/testsuite.hh>
#include <stdexcept>
using namespace Dune;
template <class Tensor1, class Tensor2>
void checkEqual(Dune::TestSuite& testSuite, Tensor1 const& a, Tensor2 const& b)
{
Dune::TestSuite subTestSuite("checkEqual");
subTestSuite.require(a.extents() == b.extents());
Dune::forEachIndex(a.extents(), [&](auto index) {
subTestSuite.check(a[index] == b[index]);
});
testSuite.subTest(subTestSuite);
}
template <class Tensor>
void checkEqualValue(Dune::TestSuite& testSuite, Tensor const& a, typename Tensor::value_type const& value)
{
Dune::TestSuite subTestSuite("checkEqualValue");
Dune::forEachIndex(a.extents(), [&](auto index) {
subTestSuite.check(a[index] == value);
});
testSuite.subTest(subTestSuite);
}
template <class D, class B>
void call (const TensorMixin<D,B>& tensor)
{
// it is possible to call a function that expects the TensorInterface base class
}
template <class Tensor>
void checkConstructors(Dune::TestSuite& testSuite)
{
Dune::TestSuite subTestSuite("checkConstructors");
// default constructor
std::cout << "default constructor..." << std::endl;
Tensor tensor;
checkEqualValue(subTestSuite, tensor, 0.0);
#if 0 // not yet implemented
std::cout << "assignment of value..." << std::endl;
tensor = 1.0;
checkEqualValue(subTestSuite, tensor, 1.0);
#endif
// constructor with a default value
std::cout << "value constructor..." << std::endl;
Tensor tensor1(1.0);
checkEqualValue(subTestSuite, tensor1, 1.0);
// copy/move constructors
std::cout << "copy constructor..." << std::endl;
Tensor tensor2{tensor1};
checkEqual(subTestSuite, tensor1,tensor2);
Tensor tensor3 = tensor1;
checkEqual(subTestSuite, tensor1,tensor3);
std::cout << "move constructor..." << std::endl;
Tensor tensor4{std::move(tensor2)};
checkEqual(subTestSuite, tensor1,tensor4);
Tensor tensor5 = std::move(tensor3);
checkEqual(subTestSuite, tensor1,tensor5);
// copy/move assignment operators
std::cout << "copy assignment..." << std::endl;
tensor4 = tensor1;
checkEqual(subTestSuite, tensor1,tensor4);
std::cout << "move assignment..." << std::endl;
tensor5 = std::move(tensor4);
checkEqual(subTestSuite, tensor1,tensor5);
std::cout << "initializerlist constructor..." << std::endl;
if constexpr(Tensor::rank() == 1) {
Tensor tensor6{6,7};
Tensor tensor7{6.0,7.0};
Tensor tensor8({6.0,7.0});
Tensor tensor9{{6.0,7.0}};
Tensor tensor10 = {6.0,7.0};
subTestSuite.check(tensor6(0) == 6.0);
subTestSuite.check(tensor6(1) == 7.0);
subTestSuite.check(tensor7(0) == 6.0);
subTestSuite.check(tensor7(1) == 7.0);
subTestSuite.check(tensor8(0) == 6.0);
subTestSuite.check(tensor8(1) == 7.0);
subTestSuite.check(tensor9(0) == 6.0);
subTestSuite.check(tensor9(1) == 7.0);
subTestSuite.check(tensor10(0) == 6.0);
subTestSuite.check(tensor10(1) == 7.0);
}
else
if constexpr(Tensor::rank() == 2) {
Tensor tensor6{{6,7},{8,9}};
Tensor tensor7{{6.0,7.0},{8.0,9.0}};
Tensor tensor8({{6.0,7.0},{8.0,9.0}});
Tensor tensor9{{{6.0,7.0},{8.0,9.0}}};
Tensor tensor10 = {{6.0,7.0},{8.0,9.0}};
subTestSuite.check(tensor6(0,0) == 6.0);
subTestSuite.check(tensor6(0,1) == 7.0);
subTestSuite.check(tensor6(1,0) == 8.0);
subTestSuite.check(tensor6(1,1) == 9.0);
subTestSuite.check(tensor7(0,0) == 6.0);
subTestSuite.check(tensor7(0,1) == 7.0);
subTestSuite.check(tensor7(1,0) == 8.0);
subTestSuite.check(tensor7(1,1) == 9.0);
subTestSuite.check(tensor8(0,0) == 6.0);
subTestSuite.check(tensor8(0,1) == 7.0);
subTestSuite.check(tensor8(1,0) == 8.0);
subTestSuite.check(tensor8(1,1) == 9.0);
subTestSuite.check(tensor9(0,0) == 6.0);
subTestSuite.check(tensor9(0,1) == 7.0);
subTestSuite.check(tensor9(1,0) == 8.0);
subTestSuite.check(tensor9(1,1) == 9.0);
subTestSuite.check(tensor10(0,0) == 6.0);
subTestSuite.check(tensor10(0,1) == 7.0);
subTestSuite.check(tensor10(1,0) == 8.0);
subTestSuite.check(tensor10(1,1) == 9.0);
}
call(tensor);
testSuite.subTest(subTestSuite);
}
template <class Tensor>
void checkAccess(Dune::TestSuite& testSuite)
{
Dune::TestSuite subTestSuite("checkAccess");
Tensor tensor(42.0);
checkEqualValue(subTestSuite, tensor, 42.0);
if constexpr(Tensor::rank() == 0) {
subTestSuite.check(tensor[std::array<int,0>{}] == 42.0);
subTestSuite.check(tensor() == 42.0);
subTestSuite.check(tensor == 42.0);
double value = tensor;
subTestSuite.check(value == 42.0);
}
else if constexpr(Tensor::rank() == 1) {
for (std::size_t i = 0; i < Tensor::static_extent(0); ++i) {
subTestSuite.check(tensor[std::array{i}] == 42.0);
subTestSuite.check(tensor(i) == 42.0);
subTestSuite.check(tensor[i] == 42.0);
subTestSuite.check(tensor.at(i) == 42.0);
}
subTestSuite.checkThrow<std::out_of_range>([&]{tensor.at(-1);});
subTestSuite.checkThrow<std::out_of_range>([&]{tensor.at(tensor.extent(0));});
}
else if constexpr(Tensor::rank() == 2) {
for (std::size_t i = 0; i < Tensor::static_extent(0); ++i) {
for (std::size_t j = 0; j < Tensor::static_extent(1); ++j) {
subTestSuite.check(tensor[std::array{i,j}] == 42.0);
subTestSuite.check(tensor(i,j) == 42.0);
subTestSuite.check(tensor.at(i,j) == 42.0);
}
subTestSuite.checkThrow<std::out_of_range>([&]{tensor.at(-1,-2);});
subTestSuite.checkThrow<std::out_of_range>([&]{tensor.at(tensor.extent(0),tensor.extent(1));});
}
}
else if constexpr(Tensor::rank() == 3) {
for (std::size_t i = 0; i < Tensor::static_extent(0); ++i) {
for (std::size_t j = 0; j < Tensor::static_extent(1); ++j) {
for (std::size_t k = 0; k < Tensor::static_extent(2); ++k) {
subTestSuite.check(tensor[std::array{i,j,k}] == 42.0);
subTestSuite.check(tensor(i,j,k) == 42.0);
subTestSuite.check(tensor.at(i,j,k) == 42.0);
}
subTestSuite.checkThrow<std::out_of_range>([&]{tensor.at(-1,-2,-3);});
subTestSuite.checkThrow<std::out_of_range>([&]{tensor.at(tensor.extent(0),tensor.extent(1),tensor.extent(2));});
}
}
}
testSuite.subTest(subTestSuite);
}
template <class Tensor>
void checkArithmetic(Dune::TestSuite& testSuite)
{
Dune::TestSuite subTestSuite("checkArithmetic");
Tensor tensor(1.0);
Tensor tensor2(2.0);
checkEqualValue(subTestSuite, tensor, 1.0);
checkEqualValue(subTestSuite, tensor2, 2.0);
#if 0 // not yet implemented
tensor *= 2.0;
checkEqualValue(subTestSuite, tensor, 2.0);
tensor += tensor2;
checkEqualValue(subTestSuite, tensor, 4.0);
tensor.axpy(4.0, tensor2); // 12
checkEqualValue(subTestSuite, tensor, 12.0);
tensor.aypx(4.0, tensor2); // 50
checkEqualValue(subTestSuite, tensor, 50.0);
tensor -= tensor2;
checkEqualValue(subTestSuite, tensor, 48.0);
#endif
testSuite.subTest(subTestSuite);
}
int main(int argc, char** argv)
{
MPIHelper::instance(argc, argv);
TestSuite testSuite;
using Tensor0 = Dune::Tensor<double>;
using Tensor1 = Dune::Tensor<double,2>;
using Tensor2 = Dune::Tensor<double,2,2>;
using Tensor3 = Dune::Tensor<double,2,2,2>;
checkConstructors<Tensor0>(testSuite);
checkConstructors<Tensor1>(testSuite);
checkConstructors<Tensor2>(testSuite);
checkConstructors<Tensor3>(testSuite);
checkAccess<Tensor0>(testSuite);
checkAccess<Tensor1>(testSuite);
checkAccess<Tensor2>(testSuite);
checkAccess<Tensor3>(testSuite);
checkArithmetic<Tensor0>(testSuite);
checkArithmetic<Tensor1>(testSuite);
checkArithmetic<Tensor2>(testSuite);
checkArithmetic<Tensor3>(testSuite);
return testSuite.exit();
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment