Newer
Older
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
// $Id$
#ifndef DUNE_FMATRIX_HH
#define DUNE_FMATRIX_HH
#include <math.h>
#include <complex>
#include <iostream>
#include "exceptions.hh"
#include "fvector.hh"
#include "precision.hh"
@addtogroup DenseMatVec
/*! \file
\brief This file implements a matrix constructed from a given type
representing a field and compile-time given number of rows and columns.
*/
template<class K, int n, int m> class FieldMatrix;
/** @brief Error thrown if operations of a FieldMatrix fail. */
class FMatrixError : public Exception {};
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
// template meta program for assignment from scalar
template<int I>
struct fmmeta_assignscalar {
template<class T, class K>
static void assignscalar (T* x, const K& k)
{
fmmeta_assignscalar<I-1>::assignscalar(x,k);
x[I] = k;
}
};
template<>
struct fmmeta_assignscalar<0> {
template<class T, class K>
static void assignscalar (T* x, const K& k)
{
x[0] = k;
}
};
// template meta program for operator+=
template<int I>
struct fmmeta_plusequal {
template<class T>
static void plusequal (T& x, const T& y)
{
x[I] += y[I];
fmmeta_plusequal<I-1>::plusequal(x,y);
}
};
template<>
struct fmmeta_plusequal<0> {
template<class T>
static void plusequal (T& x, const T& y)
{
x[0] += y[0];
}
};
// template meta program for operator-=
template<int I>
struct fmmeta_minusequal {
template<class T>
static void minusequal (T& x, const T& y)
{
x[I] -= y[I];
fmmeta_minusequal<I-1>::minusequal(x,y);
}
};
template<>
struct fmmeta_minusequal<0> {
template<class T>
static void minusequal (T& x, const T& y)
{
x[0] -= y[0];
}
};
// template meta program for operator*=
template<int I>
struct fmmeta_multequal {
template<class T, class K>
static void multequal (T& x, const K& k)
{
x[I] *= k;
fmmeta_multequal<I-1>::multequal(x,k);
}
};
template<>
struct fmmeta_multequal<0> {
template<class T, class K>
static void multequal (T& x, const K& k)
{
x[0] *= k;
}
};
// template meta program for operator/=
template<int I>
struct fmmeta_divequal {
template<class T, class K>
static void divequal (T& x, const K& k)
{
x[I] /= k;
fmmeta_divequal<I-1>::divequal(x,k);
}
};
template<>
struct fmmeta_divequal<0> {
template<class T, class K>
static void divequal (T& x, const K& k)
{
x[0] /= k;
}
};
// template meta program for dot
template<int I>
struct fmmeta_dot {
template<class X, class Y, class K>
static K dot (const X& x, const Y& y)
{
return x[I]*y[I] + fmmeta_dot<I-1>::template dot<X,Y,K>(x,y);
}
};
template<>
struct fmmeta_dot<0> {
template<class X, class Y, class K>
static K dot (const X& x, const Y& y)
{
return x[0]*y[0];
}
};
// template meta program for umv(x,y)
template<int I>
struct fmmeta_umv {
template<class Mat, class X, class Y, int c>
static void umv (const Mat& A, const X& x, Y& y)
{
typedef typename Mat::row_type R;
typedef typename Mat::field_type K;
y[I] += fmmeta_dot<c>::template dot<R,X,K>(A[I],x);
fmmeta_umv<I-1>::template umv<Mat,X,Y,c>(A,x,y);
}
};
template<>
struct fmmeta_umv<0> {
template<class Mat, class X, class Y, int c>
static void umv (const Mat& A, const X& x, Y& y)
{
typedef typename Mat::row_type R;
typedef typename Mat::field_type K;
y[0] += fmmeta_dot<c>::template dot<R,X,K>(A[0],x);
}
};
// template meta program for mmv(x,y)
template<int I>
struct fmmeta_mmv {
template<class Mat, class X, class Y, int c>
static void mmv (const Mat& A, const X& x, Y& y)
{
typedef typename Mat::row_type R;
typedef typename Mat::field_type K;
y[I] -= fmmeta_dot<c>::template dot<R,X,K>(A[I],x);
fmmeta_mmv<I-1>::template mmv<Mat,X,Y,c>(A,x,y);
}
};
template<>
struct fmmeta_mmv<0> {
template<class Mat, class X, class Y, int c>
static void mmv (const Mat& A, const X& x, Y& y)
{
typedef typename Mat::row_type R;
typedef typename Mat::field_type K;
y[0] -= fmmeta_dot<c>::template dot<R,X,K>(A[0],x);
}
};
template<class K, int n, int m, class X, class Y>
inline void fm_mmv (const FieldMatrix<K,n,m>& A, const X& x, Y& y)
{
for (int i=0; i<n; i++)
for (int j=0; j<m; j++)
y[i] -= A[i][j]*x[j];
}
template<class K>
inline void fm_mmv (const FieldMatrix<K,1,1>& A, const FieldVector<K,1>& x, FieldVector<K,1>& y)
{
y[0] -= A[0][0]*x[0];
}
// template meta program for usmv(x,y)
template<int I>
struct fmmeta_usmv {
template<class Mat, class K, class X, class Y, int c>
static void usmv (const Mat& A, const K& alpha, const X& x, Y& y)
{
typedef typename Mat::row_type R;
y[I] += alpha*fmmeta_dot<c>::template dot<R,X,K>(A[I],x);
fmmeta_usmv<I-1>::template usmv<Mat,K,X,Y,c>(A,alpha,x,y);
}
};
template<>
struct fmmeta_usmv<0> {
template<class Mat, class K, class X, class Y, int c>
static void usmv (const Mat& A, const K& alpha, const X& x, Y& y)
{
typedef typename Mat::row_type R;
y[0] += alpha*fmmeta_dot<c>::template dot<R,X,K>(A[0],x);
}
};
// conjugate komplex does nothing for non-complex types
template<class K>
inline K fm_ck (const K& k)
{
return k;
}
// conjugate komplex
template<class K>
inline std::complex<K> fm_ck (const std::complex<K>& c)
{
return std::complex<K>(c.real(),-c.imag());
}
//! solve small system
template<class K, int n, class V>
void fm_solve (const FieldMatrix<K,n,n>& Ain, V& x, const V& b)
{
// make a copy of a to store factorization
FieldMatrix<K,n,n> A(Ain);
// Gaussian elimination with maximum column pivot
double norm=A.infinity_norm_real(); // for relative thresholds
double pivthres = std::max(FMatrixPrecision<>::absolute_limit(),norm*FMatrixPrecision<>::pivoting_limit());
double singthres = std::max(FMatrixPrecision<>::absolute_limit(),norm*FMatrixPrecision<>::singular_limit());
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
V& rhs = x; // use x to store rhs
rhs = b; // copy data
// elimination phase
for (int i=0; i<n; i++) // loop over all rows
{
double pivmax=fvmeta_absreal(A[i][i]);
// pivoting ?
if (pivmax<pivthres)
{
// compute maximum of row
int imax=i; double abs;
for (int k=i+1; k<n; k++)
if ((abs=fvmeta_absreal(A[k][i]))>pivmax)
{
pivmax = abs; imax = k;
}
// swap rows
if (imax!=i)
for (int j=i; j<n; j++)
std::swap(A[i][j],A[imax][j]);
}
// singular ?
if (pivmax<singthres)
DUNE_THROW(FMatrixError,"matrix is singular");
// eliminate
for (int k=i+1; k<n; k++)
{
K factor = -A[k][i]/A[i][i];
for (int j=i+1; j<n; j++)
A[k][j] += factor*A[i][j];
rhs[k] += factor*rhs[i];
}
}
// backsolve
for (int i=n-1; i>=0; i--)
{
for (int j=i+1; j<n; j++)
rhs[i] -= A[i][j]*x[j];
x[i] = rhs[i]/A[i][i];
}
}
//! special case for 1x1 matrix, x and b may be identical
template<class K, class V>
inline void fm_solve (const FieldMatrix<K,1,1>& A, V& x, const V& b)
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (fvmeta_absreal(A[0][0])<FMatrixPrecision<>::absolute_limit())
DUNE_THROW(FMatrixError,"matrix is singular");
#endif
x[0] = b[0]/A[0][0];
}
//! special case for 2x2 matrix, x and b may be identical
template<class K, class V>
inline void fm_solve (const FieldMatrix<K,2,2>& A, V& x, const V& b)
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (fvmeta_absreal(detinv)<FMatrixPrecision<>::absolute_limit())
DUNE_THROW(FMatrixError,"matrix is singular");
detinv = 1/detinv;
#else
K detinv = 1.0/(A[0][0]*A[1][1]-A[0][1]*A[1][0]);
#endif
K temp = b[0];
x[0] = detinv*(A[1][1]*b[0]-A[0][1]*b[1]);
x[1] = detinv*(A[0][0]*b[1]-A[1][0]*temp);
}
//! compute inverse
template<class K, int n>
void fm_invert (FieldMatrix<K,n,n>& B)
{
FieldMatrix<K,n,n> A(B);
FieldMatrix<K,n,n>& L=A;
FieldMatrix<K,n,n>& U=A;
double norm=A.infinity_norm_real(); // for relative thresholds
double pivthres = std::max(FMatrixPrecision<>::absolute_limit(),norm*FMatrixPrecision<>::pivoting_limit());
double singthres = std::max(FMatrixPrecision<>::absolute_limit(),norm*FMatrixPrecision<>::singular_limit());
// LU decomposition of A in A
for (int i=0; i<n; i++) // loop over all rows
{
double pivmax=fvmeta_absreal(A[i][i]);
// pivoting ?
if (pivmax<pivthres)
{
// compute maximum of column
int imax=i; double abs;
for (int k=i+1; k<n; k++)
if ((abs=fvmeta_absreal(A[k][i]))>pivmax)
{
pivmax = abs; imax = k;
}
// swap rows
if (imax!=i)
for (int j=i; j<n; j++)
std::swap(A[i][j],A[imax][j]);
}
// singular ?
if (pivmax<singthres)
DUNE_THROW(FMatrixError,"matrix is singular");
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
// eliminate
for (int k=i+1; k<n; k++)
{
K factor = A[k][i]/A[i][i];
L[k][i] = factor;
for (int j=i+1; j<n; j++)
A[k][j] -= factor*A[i][j];
}
}
// initialize inverse
B = 0;
for (int i=0; i<n; i++) B[i][i] = 1;
// L Y = I; multiple right hand sides
for (int i=0; i<n; i++)
for (int j=0; j<i; j++)
for (int k=0; k<n; k++)
B[i][k] -= L[i][j]*B[j][k];
// U A^{-1} = Y
for (int i=n-1; i>=0; i--)
for (int k=0; k<n; k++)
{
for (int j=i+1; j<n; j++)
B[i][k] -= U[i][j]*B[j][k];
B[i][k] /= U[i][i];
}
}
//! compute inverse n=1
template<class K>
void fm_invert (FieldMatrix<K,1,1>& A)
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (fvmeta_absreal(A[0][0])<FMatrixPrecision<>::absolute_limit())
DUNE_THROW(FMatrixError,"matrix is singular");
#endif
A[0][0] = 1/A[0][0];
}
//! compute inverse n=2
template<class K>
void fm_invert (FieldMatrix<K,2,2>& A)
{
K detinv = A[0][0]*A[1][1]-A[0][1]*A[1][0];
#ifdef DUNE_FMatrix_WITH_CHECKING
if (fvmeta_absreal(detinv)<FMatrixPrecision<>::absolute_limit())
DUNE_THROW(FMatrixError,"matrix is singular");
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
#endif
detinv = 1/detinv;
K temp=A[0][0];
A[0][0] = A[1][1]*detinv;
A[0][1] = -A[0][1]*detinv;
A[1][0] = -A[1][0]*detinv;
A[1][1] = temp*detinv;
}
//! left multiplication with matrix
template<class K, int n, int m>
void fm_leftmultiply (const FieldMatrix<K,n,n>& M, FieldMatrix<K,n,m>& A)
{
FieldMatrix<K,n,m> C(A);
for (int i=0; i<n; i++)
for (int j=0; j<m; j++)
{
A[i][j] = 0;
for (int k=0; k<n; k++)
A[i][j] += M[i][k]*C[k][j];
}
}
//! left multiplication with matrix, n=1
template<class K>
void fm_leftmultiply (const FieldMatrix<K,1,1>& M, FieldMatrix<K,1,1>& A)
{
A[0][0] *= M[0][0];
}
//! left multiplication with matrix, n=2
template<class K>
void fm_leftmultiply (const FieldMatrix<K,2,2>& M, FieldMatrix<K,2,2>& A)
{
FieldMatrix<K,2,2> C(A);
A[0][0] = M[0][0]*C[0][0] + M[0][1]*C[1][0];
A[0][1] = M[0][0]*C[0][1] + M[0][1]*C[1][1];
A[1][0] = M[1][0]*C[0][0] + M[1][1]*C[1][0];
A[1][1] = M[1][0]*C[0][1] + M[1][1]*C[1][1];
}
//! right multiplication with matrix
template<class K, int n, int m>
void fm_rightmultiply (const FieldMatrix<K,m,m>& M, FieldMatrix<K,n,m>& A)
{
FieldMatrix<K,n,m> C(A);
for (int i=0; i<n; i++)
for (int j=0; j<m; j++)
{
A[i][j] = 0;
for (int k=0; k<m; k++)
A[i][j] += C[i][k]*M[k][j];
}
}
//! right multiplication with matrix, n=1
template<class K>
void fm_rightmultiply (const FieldMatrix<K,1,1>& M, FieldMatrix<K,1,1>& A)
{
A[0][0] *= M[0][0];
}
//! right multiplication with matrix, n=2
template<class K>
void fm_rightmultiply (const FieldMatrix<K,2,2>& M, FieldMatrix<K,2,2>& A)
{
FieldMatrix<K,2,2> C(A);
A[0][0] = C[0][0]*M[0][0] + C[0][1]*M[1][0];
A[0][1] = C[0][0]*M[0][1] + C[0][1]*M[1][1];
A[1][0] = C[1][0]*M[0][0] + C[1][1]*M[1][0];
A[1][1] = C[1][0]*M[0][1] + C[1][1]*M[1][1];
}
/**
@brief A dense n x m matrix.
Matrices represent linear maps from a vector space V to a vector space W.
This class represents such a linear map by storing a two-dimensional
array of numbers of a given field type K. The number of rows and
columns is given at compile time.
Implementation of all members uses template meta programs where appropriate
*/
template<class K, int n, int m>
class FieldMatrix
{
public:
// standard constructor and everything is sufficient ...
//===== type definitions and constants
//! export the type representing the field
typedef K field_type;
//! export the type representing the components
typedef K block_type;
//! We are at the leaf of the block recursion
enum {
//! The number of block levels we contain. This is 1.
blocklevel = 1
};
//! Each row is implemented by a field vector
typedef FieldVector<K,m> row_type;
//! export size
enum {
//! The number of rows.
rows = n,
//! The number of columns.
cols = m
};
//===== constructors
/** \brief Default constructor
*/
FieldMatrix () {}
/** \brief Constructor initializing the whole matrix with a scalar
*/
FieldMatrix (const K& k)
{
for (int i=0; i<n; i++) p[i] = k;
}
//===== random access interface to rows of the matrix
//! random access to the rows
row_type& operator[] (int i)
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (i<0 || i>=n) DUNE_THROW(FMatrixError,"index out of range");
#endif
return p[i];
}
//! same for read only access
const row_type& operator[] (int i) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (i<0 || i>=n) DUNE_THROW(FMatrixError,"index out of range");
#endif
return p[i];
}
//===== iterator interface to rows of the matrix
//! Iterator class for sequential access
typedef Dune::GenericIterator<FieldMatrix<K,n,m>,row_type> Iterator;
//! typedef for stl compliant access
typedef Iterator iterator;
//! rename the iterators for easier access
typedef Iterator RowIterator;
//! rename the iterators for easier access
typedef typename row_type::Iterator ColIterator;
return Iterator(*this,0);
}
//! end iterator
Iterator end ()
{
return Iterator(*this,n);
}
//! begin iterator
Iterator rbegin ()
{
return Iterator(*this,n-1);
}
//! end iterator
Iterator rend ()
{
return Iterator(*this,-1);
//! Iterator class for sequential access
typedef Dune::GenericIterator<const FieldMatrix<K,n,m>,const row_type> ConstIterator;
//! typedef for stl compliant access
typedef ConstIterator const_iterator;
typedef ConstIterator ConstRowIterator;
//! rename the iterators for easier access
typedef typename row_type::ConstIterator ConstColIterator;
//! begin iterator
ConstIterator begin () const
{
return ConstIterator(*this,0);
}
//! end iterator
ConstIterator end () const
{
return ConstIterator(*this,n);
}
//! begin iterator
ConstIterator rbegin () const
{
return ConstIterator(*this,n-1);
}
//! end iterator
ConstIterator rend () const
{
return ConstIterator(*this,-1);
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
}
//===== assignment from scalar
FieldMatrix& operator= (const K& k)
{
fmmeta_assignscalar<n-1>::assignscalar(p,k);
return *this;
}
//===== vector space arithmetic
//! vector space addition
FieldMatrix& operator+= (const FieldMatrix& y)
{
fmmeta_plusequal<n-1>::plusequal(*this,y);
return *this;
}
//! vector space subtraction
FieldMatrix& operator-= (const FieldMatrix& y)
{
fmmeta_minusequal<n-1>::minusequal(*this,y);
return *this;
}
//! vector space multiplication with scalar
FieldMatrix& operator*= (const K& k)
{
fmmeta_multequal<n-1>::multequal(*this,k);
return *this;
}
//! vector space division by scalar
FieldMatrix& operator/= (const K& k)
{
fmmeta_divequal<n-1>::divequal(*this,k);
return *this;
}
//===== linear maps
//! y += A x
template<class X, class Y>
void umv (const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
if (y.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
#endif
fmmeta_umv<n-1>::template umv<FieldMatrix,X,Y,m-1>(*this,x,y);
}
//! y += A^T x
template<class X, class Y>
void umtv (const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
if (y.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
#endif
for (int i=0; i<n; i++)
for (int j=0; j<m; j++)
y[j] += p[i][j]*x[i];
}
//! y += A^H x
template<class X, class Y>
void umhv (const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
if (y.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
#endif
for (int i=0; i<n; i++)
for (int j=0; j<m; j++)
y[j] += fm_ck(p[i][j])*x[i];
}
//! y -= A x
template<class X, class Y>
void mmv (const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
if (y.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
#endif
fmmeta_mmv<n-1>::template mmv<FieldMatrix,X,Y,m-1>(*this,x,y);
//fm_mmv(*this,x,y);
}
//! y -= A^T x
template<class X, class Y>
void mmtv (const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
if (y.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
#endif
for (int i=0; i<n; i++)
for (int j=0; j<m; j++)
y[j] -= p[i][j]*x[i];
}
//! y -= A^H x
template<class X, class Y>
void mmhv (const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
if (y.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
#endif
for (int i=0; i<n; i++)
for (int j=0; j<m; j++)
y[j] -= fm_ck(p[i][j])*x[i];
}
//! y += alpha A x
template<class X, class Y>
void usmv (const K& alpha, const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
if (y.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
#endif
fmmeta_usmv<n-1>::template usmv<FieldMatrix,K,X,Y,m-1>(*this,alpha,x,y);
}
//! y += alpha A^T x
template<class X, class Y>
void usmtv (const K& alpha, const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
if (y.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
#endif
for (int i=0; i<n; i++)
for (int j=0; j<m; j++)
y[j] += alpha*p[i][j]*x[i];
}
//! y += alpha A^H x
template<class X, class Y>
void usmhv (const K& alpha, const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
if (y.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
#endif
for (int i=0; i<n; i++)
for (int j=0; j<m; j++)
y[j] += alpha*fm_ck(p[i][j])*x[i];
}
//===== norms
//! frobenius norm: sqrt(sum over squared values of entries)
double frobenius_norm () const
{
double sum=0;
for (int i=0; i<n; ++i) sum += p[i].two_norm2();
return sqrt(sum);
}
//! square of frobenius norm, need for block recursion
double frobenius_norm2 () const
{
double sum=0;
for (int i=0; i<n; ++i) sum += p[i].two_norm2();
return sum;
}
//! infinity norm (row sum norm, how to generalize for blocks?)
double infinity_norm () const
{
double max=0;
for (int i=0; i<n; ++i) max = std::max(max,p[i].one_norm());
return max;
}
//! simplified infinity norm (uses Manhattan norm for complex values)
double infinity_norm_real () const
{
double max=0;
for (int i=0; i<n; ++i) max = std::max(max,p[i].one_norm_real());
return max;
}
//===== solve
/** \brief Solve system A x = b
*
* \exception FMatrixError if the matrix is singular
*/
template<class V>
void solve (V& x, const V& b) const
{
fm_solve(*this,x,b);
}
/** \brief Compute inverse
*
* \exception FMatrixError if the matrix is singular
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
*/
void invert ()
{
fm_invert(*this);
}
//! calculates the determinant of this matrix
K determinant () const;
//! Multiplies M from the left to this matrix
FieldMatrix& leftmultiply (const FieldMatrix<K,n,n>& M)
{
fm_leftmultiply(M,*this);
return *this;
}
//! Multiplies M from the right to this matrix
FieldMatrix& rightmultiply (const FieldMatrix<K,n,n>& M)
{
fm_rightmultiply(M,*this);
return *this;
}
//===== sizes
//! number of blocks in row direction
int N () const
{
return n;
}
//! number of blocks in column direction
int M () const
{
return m;
}
//! row dimension of block r
int rowdim (int r) const
{
return 1;
}
//! col dimension of block c
int coldim (int c) const
{
return 1;
}
//! dimension of the destination vector space
int rowdim () const
{
return n;
}
//! dimension of the source vector space
int coldim () const
{
return m;
}
//===== query
//! return true when (i,j) is in pattern
bool exists (int i, int j) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (i<0 || i>=n) DUNE_THROW(FMatrixError,"index out of range");
if (j<0 || i>=m) DUNE_THROW(FMatrixError,"index out of range");
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
#endif
return true;
}
//===== conversion operator
/** \brief Sends the matrix to an output stream */
void print (std::ostream& s) const
{
for (int i=0; i<n; i++)
s << p[i] << std::endl;
}
/** \brief Sends the matrix to an output stream */
friend std::ostream& operator<< (std::ostream& s, const FieldMatrix<K,n,m>& a)
{
a.print(s);
return s;
}
private:
// the data, very simply a built in array with rowwise ordering
row_type p[n];
};
namespace HelpMat {
// calculation of determinat of matrix
template <class K, int row,int col>
static inline K determinantMatrix (const FieldMatrix<K,row,col> &matrix)
{
if (row!=col)
DUNE_THROW(FMatrixError, "There is no determinant for a " << row << "x" << col << " matrix!");
DUNE_THROW(FMatrixError, "No implementation of determinantMatrix "
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
<< "for FieldMatrix<" << row << "," << col << "> !");
return 0.0;
}
template <typename K>
static inline K determinantMatrix (const FieldMatrix<K,1,1> &matrix)
{
return matrix[0][0];
}
template <typename K>
static inline K determinantMatrix (const FieldMatrix<K,2,2> &matrix)
{
return matrix[0][0]*matrix[1][1] - matrix[0][1]*matrix[1][0];
}
template <typename K>
static inline K determinantMatrix (const FieldMatrix<K,3,3> &matrix)
{
// code generated by maple
K t4 = matrix[0][0] * matrix[1][1];
K t6 = matrix[0][0] * matrix[1][2];
K t8 = matrix[0][1] * matrix[1][0];
K t10 = matrix[0][2] * matrix[1][0];
K t12 = matrix[0][1] * matrix[2][0];
K t14 = matrix[0][2] * matrix[2][0];
K det = (t4*matrix[2][2]-t6*matrix[2][1]-t8*matrix[2][2]+
t10*matrix[2][1]+t12*matrix[1][2]-t14*matrix[1][1]);
return det;
}
} // end namespace HelpMat
// implementation of the determinant
template <class K, int n, int m>
inline K FieldMatrix<K,n,m>::determinant () const
{
return HelpMat::determinantMatrix(*this);
}
/** \brief Special type for 1x1 matrices
*/
template<class K>
class K11Matrix
{
public:
// standard constructor and everything is sufficient ...
//===== type definitions and constants
//! export the type representing the field