Newer
Older
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_FVECTOR_HH
#define DUNE_FVECTOR_HH
#include <cmath>
#include <cstddef>
Steffen Müthing
committed
#include <utility>
#include <initializer_list>
#include <algorithm>
#include <dune/common/std/constexpr.hh>
#include "typetraits.hh"
#include "array.hh"
#include "ftraits.hh"
#include "densevector.hh"
#include "unused.hh"
/** @addtogroup DenseMatVec
@{
* \brief Implements a vector constructed from a given type
representing a field and a compile-time given size.
*/
template< class K, int SIZE > class FieldVector;
template< class K, int SIZE >
struct DenseMatVecTraits< FieldVector<K,SIZE> >
{
typedef FieldVector<K,SIZE> derived_type;
typedef Dune::array<K,SIZE> container_type;
typedef K value_type;
typedef typename container_type::size_type size_type;
};
template< class K, int SIZE >
struct FieldTraits< FieldVector<K,SIZE> >
{
typedef typename FieldTraits<K>::field_type field_type;
typedef typename FieldTraits<K>::real_type real_type;
};
/**
* @brief TMP to check the size of a DenseVectors statically, if possible.
*
* If the implementation type of C is a FieldVector, we statically check
* whether its dimension is SIZE.
* @tparam C The implementation of the other DenseVector
* @tparam SIZE The size we need assume.
*/
template<typename C, int SIZE>
struct IsFieldVectorSizeCorrect
{
enum {
/**
*@param True if C is not of type FieldVector or its dimension
* is not equal SIZE.
*/
value = true
};
};
template<typename T, int SIZE>
struct IsFieldVectorSizeCorrect<FieldVector<T,SIZE>,SIZE>
{
enum {value = true};
};
template<typename T, int SIZE, int SIZE1>
struct IsFieldVectorSizeCorrect<FieldVector<T,SIZE1>,SIZE>
{
enum {value = false};
};
/** \brief vector space out of a tensor product of fields.
* \tparam K the field type (use float, double, complex, etc)
* \tparam SIZE number of components.
template< class K, int SIZE >
class FieldVector :
public DenseVector< FieldVector<K,SIZE> >
Dune::array<K,SIZE> _data;
typedef DenseVector< FieldVector<K,SIZE> > Base;
//! The size of this vector.
dimension = SIZE
typedef typename Base::size_type size_type;
typedef typename Base::value_type value_type;
Steffen Müthing
committed
//! Constructor making default-initialized vector
FieldVector()
: _data{}
{}
//! Constructor making vector with identical coordinates
explicit FieldVector (const K& t)
{
Andreas Dedner
committed
fill(t);
//! Constructor making vector with identical coordinates
FieldVector (const FieldVector & x) : _data(x._data)
{}
FieldVector (std::initializer_list<K> const &l)
{
assert(l.size() == dimension);// Actually, this is not needed any more!
std::copy_n(l.begin(), std::min(static_cast<std::size_t>(dimension),
l.size()),
_data.begin());
}
* \brief Copy constructor from a second vector of possibly different type
* If the DenseVector type of the this constructor's argument
* is implemented by a FieldVector, it is statically checked
* if it has the correct size. If this is not the case
* the constructor is removed from the overload set using SFINAE.
*
* \param[in] x A DenseVector with correct size.
* \param[in] dummy A void* dummy argument needed by SFINAE.
*/
template<class C>
FieldVector (const DenseVector<C> & x, typename Dune::enable_if<IsFieldVectorSizeCorrect<C,SIZE>::value>::type* dummy=0 )
{
DUNE_UNUSED_PARAMETER(dummy);
// do a run-time size check, for the case that x is not a FieldVector
assert(x.size() == SIZE); // Actually this is not needed any more!
std::copy_n(x.begin(), std::min(static_cast<std::size_t>(SIZE),x.size()), _data.begin());
}
//! Constructor making vector with identical coordinates
template<class K1, int SIZE1>
explicit FieldVector (const FieldVector<K1,SIZE1> & x)
{
static_assert(SIZE1 == SIZE, "FieldVector in constructor has wrong size");
for (size_type i = 0; i<SIZE; i++)
_data[i] = x[i];
}
using Base::operator=;
DUNE_CONSTEXPR size_type size () const { return vec_size(); }
// make this thing a vector
DUNE_CONSTEXPR size_type vec_size () const { return SIZE; }
K & vec_access(size_type i) { return _data[i]; }
const K & vec_access(size_type i) const { return _data[i]; }
Andreas Dedner
committed
private:
void fill(const K& t)
{
for (int i=0; i<SIZE; i++) _data[i]=t;
}
/** \brief Read a FieldVector from an input stream
* \relates FieldVector
*
* \note This operator is STL compliant, i.e., the content of v is only
* changed if the read operation is successful.
*
* \param[in] in std :: istream to read from
* \param[out] v FieldVector to be read
*
* \returns the input stream (in)
*/
inline std::istream &operator>> ( std::istream &in,
FieldVector<K, SIZE> &v )
FieldVector<K, SIZE> w;
for( typename FieldVector<K, SIZE>::size_type i = 0; i < SIZE; ++i )
if(in)
template< class K >
struct DenseMatVecTraits< FieldVector<K,1> >
{
typedef FieldVector<K,1> derived_type;
typedef K container_type;
typedef K value_type;
typedef size_t size_type;
};
/** \brief Vectors containing only one component
Christian Engwer
committed
*/
template<class K>
class FieldVector<K, 1> :
public DenseVector< FieldVector<K,1> >
K _data;
typedef DenseVector< FieldVector<K,1> > Base;
public:
//! export size
enum {
//! The size of this vector.
dimension = 1
};
typedef typename Base::size_type size_type;
//===== construction
/** \brief Default constructor */
Steffen Müthing
committed
FieldVector ()
: _data()
{}
/** \brief Constructor with a given scalar */
Christian Engwer
committed
template<typename T,
typename EnableIf = typename std::enable_if<
std::is_convertible<T, K>::value &&
! std::is_same<K, DenseVector<typename FieldTraits<T>::field_type>
>::value
>::type
>
FieldVector (const T& k) : _data(k) {}
//! Constructor making vector with identical coordinates
template<class C>
FieldVector (const DenseVector<C> & x)
{
static_assert(((bool)IsFieldVectorSizeCorrect<C,1>::value), "FieldVectors do not match in dimension!");
assert(x.size() == 1);
_data = x[0];
}
//! copy constructor
FieldVector ( const FieldVector &other )
: _data( other._data )
{}
//! Assignment operator for scalar
Christian Engwer
committed
template<typename T,
typename EnableIf = typename std::enable_if<
std::is_convertible<T, K>::value &&
! std::is_same<K, DenseVector<typename FieldTraits<T>::field_type>
>::value
>::type
>
inline FieldVector& operator= (const T& k)
{
_data = k;
return *this;
}
DUNE_CONSTEXPR size_type size () const { return vec_size(); }
//===== forward methods to container
DUNE_CONSTEXPR size_type vec_size () const { return 1; }
K & vec_access(size_type i)
{
assert(i == 0);
return _data;
}
const K & vec_access(size_type i) const
{
assert(i == 0);
return _data;
}
//===== conversion operator
/** \brief Conversion operator */
Oliver Sander
committed
operator K& () { return _data; }
/** \brief Const conversion operator */
Oliver Sander
committed
operator const K& () const { return _data; }
/* ----- FV / FV ----- */
Christian Engwer
committed
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
/* mostly not necessary as these operations are already covered via the cast operator */
//! Binary compare, when using FieldVector<K,1> like K
template<class K>
inline bool operator> (const FieldVector<K,1>& a, const FieldVector<K,1>& b)
{
return a[0]>b[0];
}
//! Binary compare, when using FieldVector<K,1> like K
template<class K>
inline bool operator>= (const FieldVector<K,1>& a, const FieldVector<K,1>& b)
{
return a[0]>=b[0];
}
//! Binary compare, when using FieldVector<K,1> like K
template<class K>
inline bool operator< (const FieldVector<K,1>& a, const FieldVector<K,1>& b)
{
return a[0]<b[0];
}
//! Binary compare, when using FieldVector<K,1> like K
template<class K>
inline bool operator<= (const FieldVector<K,1>& a, const FieldVector<K,1>& b)
{
return a[0]<=b[0];
}
/* ----- FV / scalar ----- */
//! Binary addition, when using FieldVector<K,1> like K
template<class K>
inline FieldVector<K,1> operator+ (const FieldVector<K,1>& a, const K b)
{
return a[0]+b;
}
//! Binary subtraction, when using FieldVector<K,1> like K
template<class K>
inline FieldVector<K,1> operator- (const FieldVector<K,1>& a, const K b)
{
return a[0]-b;
}
//! Binary multiplication, when using FieldVector<K,1> like K
inline FieldVector<K,1> operator* (const FieldVector<K,1>& a, const K b)
return a[0]*b;
//! Binary division, when using FieldVector<K,1> like K
inline FieldVector<K,1> operator/ (const FieldVector<K,1>& a, const K b)
return a[0]/b;
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
//! Binary compare, when using FieldVector<K,1> like K
template<class K>
inline bool operator> (const FieldVector<K,1>& a, const K b)
{
return a[0]>b;
}
//! Binary compare, when using FieldVector<K,1> like K
template<class K>
inline bool operator>= (const FieldVector<K,1>& a, const K b)
{
return a[0]>=b;
}
//! Binary compare, when using FieldVector<K,1> like K
template<class K>
inline bool operator< (const FieldVector<K,1>& a, const K b)
{
return a[0]<b;
}
//! Binary compare, when using FieldVector<K,1> like K
template<class K>
inline bool operator<= (const FieldVector<K,1>& a, const K b)
{
return a[0]<=b;
}
//! Binary compare, when using FieldVector<K,1> like K
template<class K>
inline bool operator== (const FieldVector<K,1>& a, const K b)
{
return a[0]==b;
}
//! Binary compare, when using FieldVector<K,1> like K
template<class K>
inline bool operator!= (const FieldVector<K,1>& a, const K b)
{
return a[0]!=b;
}
/* ----- scalar / FV ------ */
//! Binary addition, when using FieldVector<K,1> like K
template<class K>
inline FieldVector<K,1> operator+ (const K a, const FieldVector<K,1>& b)
{
return a+b[0];
}
//! Binary subtraction, when using FieldVector<K,1> like K
template<class K>
inline FieldVector<K,1> operator- (const K a, const FieldVector<K,1>& b)
{
return a-b[0];
//! Binary multiplication, when using FieldVector<K,1> like K
template<class K>
inline FieldVector<K,1> operator* (const K a, const FieldVector<K,1>& b)
{
return a*b[0];
}
//! Binary division, when using FieldVector<K,1> like K
template<class K>
inline FieldVector<K,1> operator/ (const K a, const FieldVector<K,1>& b)
{
return a/b[0];
}
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
//! Binary compare, when using FieldVector<K,1> like K
template<class K>
inline bool operator> (const K a, const FieldVector<K,1>& b)
{
return a>b[0];
}
//! Binary compare, when using FieldVector<K,1> like K
template<class K>
inline bool operator>= (const K a, const FieldVector<K,1>& b)
{
return a>=b[0];
}
//! Binary compare, when using FieldVector<K,1> like K
template<class K>
inline bool operator< (const K a, const FieldVector<K,1>& b)
{
return a<b[0];
}
//! Binary compare, when using FieldVector<K,1> like K
template<class K>
inline bool operator<= (const K a, const FieldVector<K,1>& b)
{
return a<=b[0];
}
//! Binary compare, when using FieldVector<K,1> like K
template<class K>
inline bool operator== (const K a, const FieldVector<K,1>& b)
{
return a==b[0];
}
//! Binary compare, when using FieldVector<K,1> like K
template<class K>
inline bool operator!= (const K a, const FieldVector<K,1>& b)
{
return a!=b[0];
}
/** @} end documentation */
} // end namespace
#endif