Newer
Older
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
// $Id$
#include <cmath>
#include <cstddef>
#include "exceptions.hh"
#include "fvector.hh"
#include "precision.hh"
#include "static_assert.hh"
template<class K, int n, int m> class FieldMatrix;
template<class K, int n, int m>
struct FieldTraits< FieldMatrix<K,n,m> >
{
typedef const typename FieldTraits<K>::field_type field_type;
typedef const typename FieldTraits<K>::real_type real_type;
};
/*! \file
\brief This file implements a matrix constructed from a given type
representing a field and compile-time given number of rows and columns.
*/
template<class K, int n, int m, typename T>
void istl_assign_to_fmatrix(FieldMatrix<K,n,m>& f, const T& t)
{
DUNE_THROW(NotImplemented, "You need to specialise this function for type T!");
}
namespace
{
template<bool b>
struct Assigner
{
template<class K, int n, int m, class T>
static void assign(FieldMatrix<K,n,m>& fm, const T& t)
{
istl_assign_to_fmatrix(fm, t);
}
};
template<>
struct Assigner<true>
{
template<class K, int n, int m, class T>
static void assign(FieldMatrix<K,n,m>& fm, const T& t)
{
fm = static_cast<const K>(t);
}
};
}
/** @brief Error thrown if operations of a FieldMatrix fail. */
class FMatrixError : public Exception {};
// conjugate komplex does nothing for non-complex types
template<class K>
inline K fm_ck (const K& k)
{
return k;
}
// conjugate komplex
template<class K>
inline std::complex<K> fm_ck (const std::complex<K>& c)
{
return std::complex<K>(c.real(),-c.imag());
}
/**
@brief A dense n x m matrix.
Matrices represent linear maps from a vector space V to a vector space W.
This class represents such a linear map by storing a two-dimensional
%array of numbers of a given field type K. The number of rows and
#ifdef DUNE_EXPRESSIONTEMPLATES
template<class K, int n, int m>
class FieldMatrix : ExprTmpl::Matrix< FieldMatrix<K,n,m> >
#else
template<class K, int n, int m>
class FieldMatrix
{
public:
// standard constructor and everything is sufficient ...
//===== type definitions and constants
//! export the type representing the field
typedef K field_type;
//! export the type representing the components
typedef K block_type;
//! The type used for the index access and size operations.
typedef std::size_t size_type;
enum {
//! The number of block levels we contain. This is 1.
blocklevel = 1
};
//! Each row is implemented by a field vector
typedef FieldVector<K,m> row_type;
//! export size
enum {
//! The number of rows.
rows = n,
//! The number of columns.
cols = m
};
//===== constructors
/** \brief Default constructor
*/
FieldMatrix () {}
/** \brief Constructor initializing the whole matrix with a scalar
*/
explicit FieldMatrix (const K& k)
for (size_type i=0; i<n; i++) p[i] = k;
template<typename T>
explicit FieldMatrix( const T& t)
{
Assigner<Conversion<T,K>::exists>::assign(*this, t);
}
//===== random access interface to rows of the matrix
//! random access to the rows
row_type& operator[] (size_type i)
#ifdef DUNE_FMatrix_WITH_CHECKING
if (i<0 || i>=n) DUNE_THROW(FMatrixError,"index out of range");
#endif
return p[i];
}
//! same for read only access
const row_type& operator[] (size_type i) const
#ifdef DUNE_FMatrix_WITH_CHECKING
if (i<0 || i>=n) DUNE_THROW(FMatrixError,"index out of range");
#endif
return p[i];
}
//===== iterator interface to rows of the matrix
//! Iterator class for sequential access
typedef FieldIterator<FieldMatrix<K,n,m>,row_type> Iterator;
//! typedef for stl compliant access
typedef Iterator iterator;
//! rename the iterators for easier access
typedef Iterator RowIterator;
//! rename the iterators for easier access
typedef typename row_type::Iterator ColIterator;
return Iterator(*this,0);
}
//! end iterator
Iterator end ()
{
return Iterator(*this,n);
}
//! begin iterator
Iterator rbegin ()
{
return Iterator(*this,n-1);
}
//! end iterator
Iterator rend ()
{
return Iterator(*this,-1);
//! Iterator class for sequential access
typedef FieldIterator<const FieldMatrix<K,n,m>,const row_type> ConstIterator;
//! typedef for stl compliant access
typedef ConstIterator const_iterator;
typedef ConstIterator ConstRowIterator;
//! rename the iterators for easier access
typedef typename row_type::ConstIterator ConstColIterator;
//! begin iterator
ConstIterator begin () const
{
return ConstIterator(*this,0);
}
//! end iterator
ConstIterator end () const
{
return ConstIterator(*this,n);
}
//! begin iterator
ConstIterator rbegin () const
{
return ConstIterator(*this,n-1);
}
//! end iterator
ConstIterator rend () const
{
return ConstIterator(*this,-1);
}
//===== assignment from scalar
FieldMatrix& operator= (const K& k)
{
Sreejith Pulloor Kuttanikkad
committed
for (size_type i=0; i<n; i++)
Oliver Sander
committed
p[i] = k;
template<typename T>
FieldMatrix& operator= ( const T& t)
{
Assigner<Conversion<T,K>::exists>::assign(*this, t);
return *this;
}
//===== vector space arithmetic
//! vector space addition
FieldMatrix& operator+= (const FieldMatrix& y)
{
Sreejith Pulloor Kuttanikkad
committed
for (size_type i=0; i<n; i++)
Oliver Sander
committed
p[i] += y.p[i];
return *this;
}
//! vector space subtraction
FieldMatrix& operator-= (const FieldMatrix& y)
{
Sreejith Pulloor Kuttanikkad
committed
for (size_type i=0; i<n; i++)
Oliver Sander
committed
p[i] -= y.p[i];
return *this;
}
//! vector space multiplication with scalar
FieldMatrix& operator*= (const K& k)
{
Sreejith Pulloor Kuttanikkad
committed
for (size_type i=0; i<n; i++)
Oliver Sander
committed
p[i] *= k;
return *this;
}
//! vector space division by scalar
FieldMatrix& operator/= (const K& k)
{
Sreejith Pulloor Kuttanikkad
committed
for (size_type i=0; i<n; i++)
Oliver Sander
committed
p[i] /= k;
//! vector space axpy operation (*this += k y)
FieldMatrix &axpy ( const K &k, const FieldMatrix &y )
{
for( size_type i = 0; i < n; ++i )
p[ i ].axpy( k, y[ i ] );
return *this;
}
//! y = A x
template<class X, class Y>
void mv (const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
assert(&x != &y);
if (x.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
if (y.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
#endif
y[i] = 0;
for (size_type j=0; j<m; j++)
y[i] += (*this)[i][j] * x[j];
//! y = A^T x
template< class X, class Y >
void mtv ( const X &x, Y &y ) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
assert( &x != &y );
if( x.N() != N() )
DUNE_THROW( FMatrixError, "Index out of range." );
if( y.N() != M() )
DUNE_THROW( FMatrixError, "Index out of range." );
#endif
for( size_type i = 0; i < m; ++i )
{
y[ i ] = 0;
for( size_type j = 0; j < n; ++j )
y[ i ] += (*this)[ j ][ i ] * x[ j ];
}
}
//! y += A x
template<class X, class Y>
void umv (const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
if (y.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
Oliver Sander
committed
for (size_type i=0; i<n; i++)
for (size_type j=0; j<m; j++)
y[i] += (*this)[i][j] * x[j];
}
//! y += A^T x
template<class X, class Y>
void umtv (const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
if (y.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
for (size_type i=0; i<n; i++)
for (size_type j=0; j<m; j++)
y[j] += p[i][j]*x[i];
}
//! y += A^H x
template<class X, class Y>
void umhv (const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
if (y.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
for (size_type i=0; i<n; i++)
for (size_type j=0; j<m; j++)
y[j] += fm_ck(p[i][j])*x[i];
}
//! y -= A x
template<class X, class Y>
void mmv (const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
if (y.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
Oliver Sander
committed
for (size_type i=0; i<n; i++)
for (size_type j=0; j<m; j++)
y[i] -= (*this)[i][j] * x[j];
}
//! y -= A^T x
template<class X, class Y>
void mmtv (const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
if (y.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
for (size_type i=0; i<n; i++)
for (size_type j=0; j<m; j++)
y[j] -= p[i][j]*x[i];
}
//! y -= A^H x
template<class X, class Y>
void mmhv (const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
if (y.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
for (size_type i=0; i<n; i++)
for (size_type j=0; j<m; j++)
y[j] -= fm_ck(p[i][j])*x[i];
}
//! y += alpha A x
template<class X, class Y>
void usmv (const K& alpha, const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
if (y.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
Oliver Sander
committed
for (size_type i=0; i<n; i++)
for (size_type j=0; j<m; j++)
y[i] += alpha * (*this)[i][j] * x[j];
}
//! y += alpha A^T x
template<class X, class Y>
void usmtv (const K& alpha, const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
if (y.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
for (size_type i=0; i<n; i++)
for (size_type j=0; j<m; j++)
y[j] += alpha*p[i][j]*x[i];
}
//! y += alpha A^H x
template<class X, class Y>
void usmhv (const K& alpha, const X& x, Y& y) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (x.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
if (y.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
for (size_type i=0; i<n; i++)
for (size_type j=0; j<m; j++)
y[j] += alpha*fm_ck(p[i][j])*x[i];
}
//===== norms
//! frobenius norm: sqrt(sum over squared values of entries)
typename FieldTraits<K>::real_type frobenius_norm () const
typename FieldTraits<K>::real_type sum=0;
for (size_type i=0; i<n; ++i) sum += p[i].two_norm2();
return sqrt(sum);
}
//! square of frobenius norm, need for block recursion
typename FieldTraits<K>::real_type frobenius_norm2 () const
typename FieldTraits<K>::real_type sum=0;
for (size_type i=0; i<n; ++i) sum += p[i].two_norm2();
return sum;
}
//! infinity norm (row sum norm, how to generalize for blocks?)
typename FieldTraits<K>::real_type infinity_norm () const
typename FieldTraits<K>::real_type max=0;
for (size_type i=0; i<n; ++i) max = std::max(max,p[i].one_norm());
return max;
}
//! simplified infinity norm (uses Manhattan norm for complex values)
typename FieldTraits<K>::real_type infinity_norm_real () const
typename FieldTraits<K>::real_type max=0;
for (size_type i=0; i<n; ++i) max = std::max(max,p[i].one_norm_real());
return max;
}
//===== solve
/** \brief Solve system A x = b
*
* \exception FMatrixError if the matrix is singular
Oliver Sander
committed
void solve (V& x, const V& b) const;
* \exception FMatrixError if the matrix is singular
Oliver Sander
committed
void invert();
//! calculates the determinant of this matrix
K determinant () const;
//! Multiplies M from the left to this matrix
FieldMatrix& leftmultiply (const FieldMatrix<K,n,n>& M)
{
Oliver Sander
committed
FieldMatrix<K,n,m> C(*this);
Sreejith Pulloor Kuttanikkad
committed
for (size_type i=0; i<n; i++)
for (size_type j=0; j<m; j++) {
Oliver Sander
committed
(*this)[i][j] = 0;
Sreejith Pulloor Kuttanikkad
committed
for (size_type k=0; k<n; k++)
Oliver Sander
committed
(*this)[i][j] += M[i][k]*C[k][j];
}
//! Multiplies M from the left to this matrix, this matrix is not modified
template<int l>
FieldMatrix<K,l,m> leftmultiplyany (const FieldMatrix<K,l,n>& M)
{
FieldMatrix<K,l,m> C;
for (size_type i=0; i<l; i++) {
for (size_type j=0; j<m; j++) {
C[i][j] = 0;
for (size_type k=0; k<n; k++)
C[i][j] += M[i][k]*(*this)[k][j];
}
}
return C;
}
FieldMatrix& rightmultiply (const FieldMatrix<K,m,m>& M)
Oliver Sander
committed
FieldMatrix<K,n,m> C(*this);
Sreejith Pulloor Kuttanikkad
committed
for (size_type i=0; i<n; i++)
for (size_type j=0; j<m; j++) {
Oliver Sander
committed
(*this)[i][j] = 0;
Sreejith Pulloor Kuttanikkad
committed
for (size_type k=0; k<m; k++)
Oliver Sander
committed
(*this)[i][j] += C[i][k]*M[k][j];
}
//! Multiplies M from the right to this matrix, this matrix is not modified
template<int l>
FieldMatrix<K,n,l> rightmultiplyany (const FieldMatrix<K,m,l>& M)
{
FieldMatrix<K,n,l> C;
for (size_type i=0; i<n; i++) {
for (size_type j=0; j<l; j++) {
C[i][j] = 0;
for (size_type k=0; k<m; k++)
C[i][j] += (*this)[i][k]*M[k][j];
}
}
return C;
}
//===== sizes
//! number of blocks in row direction
size_type N () const
{
return n;
}
//! number of blocks in column direction
size_type M () const
{
return m;
}
//===== query
//! return true when (i,j) is in pattern
bool exists (size_type i, size_type j) const
#ifdef DUNE_FMatrix_WITH_CHECKING
if (i<0 || i>=n) DUNE_THROW(FMatrixError,"row index out of range");
if (j<0 || j>=m) DUNE_THROW(FMatrixError,"column index out of range");
#endif
return true;
}
//===== conversion operator
/** \brief Sends the matrix to an output stream */
friend std::ostream& operator<< (std::ostream& s, const FieldMatrix<K,n,m>& a)
{
for (size_type i=0; i<n; i++)
s << a.p[i] << std::endl;
Oliver Sander
committed
// the data, very simply a built in array with row-wise ordering
row_type p[(n > 0) ? n : 1];
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
struct ElimPivot
{
ElimPivot(size_type pivot[n]);
void swap(int i, int j);
template<typename T>
void operator()(const T&, int k, int i)
{}
size_type* pivot_;
};
template<typename V>
struct Elim
{
Elim(V& rhs);
void swap(int i, int j);
void operator()(const typename V::field_type& factor, int k, int i);
V* rhs_;
};
struct ElimDet
{
ElimDet(K& sign) : sign_(sign)
{ sign_ = 1; }
void swap(int i, int j)
{ sign_ *= -1; }
void operator()(const K&, int k, int i)
{}
K& sign_;
};
template<class Func>
void luDecomposition(FieldMatrix<K,n,n>& A, Func func) const;
template<typename K, int n, int m>
FieldMatrix<K,n,m>::ElimPivot::ElimPivot(size_type pivot[n])
: pivot_(pivot)
{
for(int i=0; i < n; ++i) pivot[i]=i;
}
template<typename K, int n, int m>
void FieldMatrix<K,n,m>::ElimPivot::swap(int i, int j)
{
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
}
template<typename K, int n, int m>
template<typename V>
FieldMatrix<K,n,m>::Elim<V>::Elim(V& rhs)
: rhs_(&rhs)
{}
template<typename K, int n, int m>
template<typename V>
void FieldMatrix<K,n,m>::Elim<V>::swap(int i, int j)
{
std::swap((*rhs_)[i], (*rhs_)[j]);
}
template<typename K, int n, int m>
template<typename V>
void FieldMatrix<K,n,m>::
Elim<V>::operator()(const typename V::field_type& factor, int k, int i)
{
(*rhs_)[k] -= factor*(*rhs_)[i];
}
template<typename K, int n, int m>
template<typename Func>
inline void FieldMatrix<K,n,m>::luDecomposition(FieldMatrix<K,n,n>& A, Func func) const
{
typename FieldTraits<K>::real_type norm=A.infinity_norm_real(); // for relative thresholds
typename FieldTraits<K>::real_type pivthres = std::max(FMatrixPrecision<>::absolute_limit(),norm*FMatrixPrecision<>::pivoting_limit());
typename FieldTraits<K>::real_type singthres = std::max(FMatrixPrecision<>::absolute_limit(),norm*FMatrixPrecision<>::singular_limit());
// LU decomposition of A in A
for (int i=0; i<n; i++) // loop over all rows
{
typename FieldTraits<K>::real_type pivmax=fvmeta_absreal(A[i][i]);
// pivoting ?
if (pivmax<pivthres)
{
// compute maximum of column
int imax=i; typename FieldTraits<K>::real_type abs;
for (int k=i+1; k<n; k++)
if ((abs=fvmeta_absreal(A[k][i]))>pivmax)
{
pivmax = abs; imax = k;
}
// swap rows
if (imax!=i) {
}
}
// singular ?
if (pivmax<singthres)
DUNE_THROW(FMatrixError,"matrix is singular");
// eliminate
for (int k=i+1; k<n; k++)
{
K factor = A[k][i]/A[i][i];
A[k][i] = factor;
for (int j=i+1; j<n; j++)
A[k][j] -= factor*A[i][j];
func(factor, k, i);
}
}
}
Oliver Sander
committed
template <class K, int n, int m>
template <class V>
inline void FieldMatrix<K,n,m>::solve(V& x, const V& b) const
{
// never mind those ifs, because they get optimized away
if (n!=m)
DUNE_THROW(FMatrixError, "Can't solve for a " << n << "x" << m << " matrix!");
Oliver Sander
committed
// no need to implement the case 1x1, because the whole matrix class is
// specialized for this
Oliver Sander
committed
if (n==2) {
Oliver Sander
committed
#ifdef DUNE_FMatrix_WITH_CHECKING
K detinv = p[0][0]*p[1][1]-p[0][1]*p[1][0];
if (fvmeta_absreal(detinv)<FMatrixPrecision<>::absolute_limit())
DUNE_THROW(FMatrixError,"matrix is singular");
detinv = 1/detinv;
#else
K detinv = 1.0/(p[0][0]*p[1][1]-p[0][1]*p[1][0]);
#endif
Oliver Sander
committed
x[0] = detinv*(p[1][1]*b[0]-p[0][1]*b[1]);
x[1] = detinv*(p[0][0]*b[1]-p[1][0]*b[0]);
} else if (n==3) {
K d = determinant();
#ifdef DUNE_FMatrix_WITH_CHECKING
if (fvmeta_absreal(d)<FMatrixPrecision<>::absolute_limit())
DUNE_THROW(FMatrixError,"matrix is singular");
#endif
x[0] = (b[0]*p[1][1]*p[2][2] - b[0]*p[2][1]*p[1][2]
- b[1] *p[0][1]*p[2][2] + b[1]*p[2][1]*p[0][2]
+ b[2] *p[0][1]*p[1][2] - b[2]*p[1][1]*p[0][2]) / d;
x[1] = (p[0][0]*b[1]*p[2][2] - p[0][0]*b[2]*p[1][2]
- p[1][0] *b[0]*p[2][2] + p[1][0]*b[2]*p[0][2]
+ p[2][0] *b[0]*p[1][2] - p[2][0]*b[1]*p[0][2]) / d;
x[2] = (p[0][0]*p[1][1]*b[2] - p[0][0]*p[2][1]*b[1]
- p[1][0] *p[0][1]*b[2] + p[1][0]*p[2][1]*b[0]
+ p[2][0] *p[0][1]*b[1] - p[2][0]*p[1][1]*b[0]) / d;
Oliver Sander
committed
} else {
V& rhs = x; // use x to store rhs
rhs = b; // copy data
Oliver Sander
committed
FieldMatrix<K,n,n> A(*this);
Oliver Sander
committed
// backsolve
Oliver Sander
committed
for (int j=i+1; j<n; j++)
rhs[i] -= A[i][j]*x[j];
x[i] = rhs[i]/A[i][i];
}
Oliver Sander
committed
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
}
template <class K, int n, int m>
inline void FieldMatrix<K,n,m>::invert()
{
// never mind those ifs, because they get optimized away
if (n!=m)
DUNE_THROW(FMatrixError, "Can't invert a " << n << "x" << m << " matrix!");
// no need to implement the case 1x1, because the whole matrix class is
// specialized for this
if (n==2) {
K detinv = p[0][0]*p[1][1]-p[0][1]*p[1][0];
#ifdef DUNE_FMatrix_WITH_CHECKING
if (fvmeta_absreal(detinv)<FMatrixPrecision<>::absolute_limit())
DUNE_THROW(FMatrixError,"matrix is singular");
#endif
detinv = 1/detinv;
K temp=p[0][0];
p[0][0] = p[1][1]*detinv;
p[0][1] = -p[0][1]*detinv;
p[1][0] = -p[1][0]*detinv;
p[1][1] = temp*detinv;
} else {
FieldMatrix<K,n,n> A(*this);
size_type pivot[n];
luDecomposition(A, ElimPivot(pivot));
FieldMatrix<K,n,m>& L=A;
FieldMatrix<K,n,m>& U=A;
Oliver Sander
committed
// initialize inverse
Sreejith Pulloor Kuttanikkad
committed
for(size_type i=0; i<n; ++i)
Oliver Sander
committed
// L Y = I; multiple right hand sides
Sreejith Pulloor Kuttanikkad
committed
for (size_type i=0; i<n; i++) {
for (size_type j=0; j<i; j++)
for (size_type k=0; k<n; k++)
Oliver Sander
committed
// U A^{-1} = Y
Sreejith Pulloor Kuttanikkad
committed
for (size_type k=0; k<n; k++) {
for (size_type j=i+1; j<n; j++)
Oliver Sander
committed
}
Sreejith Pulloor Kuttanikkad
committed
for(size_type j=0; j<n; ++j)
Oliver Sander
committed
}
// implementation of the determinant
template <class K, int n, int m>
Oliver Sander
committed
inline K FieldMatrix<K,n,m>::determinant() const
Oliver Sander
committed
// never mind those ifs, because they get optimized away
if (n!=m)
DUNE_THROW(FMatrixError, "There is no determinant for a " << n << "x" << m << " matrix!");
// no need to implement the case 1x1, because the whole matrix class is
// specialized for this
if (n==2)
return p[0][0]*p[1][1] - p[0][1]*p[1][0];
if (n==3) {
// code generated by maple
K t4 = p[0][0] * p[1][1];
K t6 = p[0][0] * p[1][2];
K t8 = p[0][1] * p[1][0];
K t10 = p[0][2] * p[1][0];
K t12 = p[0][1] * p[2][0];
K t14 = p[0][2] * p[2][0];
return (t4*p[2][2]-t6*p[2][1]-t8*p[2][2]+
t10*p[2][1]+t12*p[1][2]-t14*p[1][1]);
}
FieldMatrix<K,n,n> A(*this);
K det;
try
{
luDecomposition(A, ElimDet(det));
}
catch (FMatrixError&)
{
return 0;
}
for (int i = 0; i < n; ++i)
det *= A[i][i];
return det;
/** \brief Special type for 1x1 matrices
*/
template<class K>
class FieldMatrix<K,1,1>
{
public:
// standard constructor and everything is sufficient ...
//===== type definitions and constants
//! export the type representing the field
typedef K field_type;
//! export the type representing the components
typedef K block_type;
//! The type used for index access and size operations
//! We are at the leaf of the block recursion
enum {
//! The number of block levels we contain.
//! This is always one for this type.
blocklevel = 1
};
//! Each row is implemented by a field vector
typedef FieldVector<K,1> row_type;
//! export size
enum {
//! \brief The number of rows.
//! This is always one for this type.
rows = 1,
n = 1,
//! \brief The number of columns.
//! This is always one for this type.
cols = 1,
m = 1
};
Oliver Sander
committed
//===== constructors
/** \brief Default constructor
*/
FieldMatrix () {}
/** \brief Constructor initializing the whole matrix with a scalar
*/
Oliver Sander
committed
{
a = k;
}
template<typename T>
explicit FieldMatrix( const T& t)
{
Assigner<Conversion<T,K>::exists>::assign(*this, t);
}
//===== random access interface to rows of the matrix
//! random access to the rows
row_type& operator[] (size_type i)
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (i<0 || i>=n) DUNE_THROW(FMatrixError,"index out of range");
#endif
return a;
}
//! same for read only access
const row_type& operator[] (size_type i) const
{
#ifdef DUNE_FMatrix_WITH_CHECKING
if (i<0 || i>=n) DUNE_THROW(FMatrixError,"index out of range");
#endif
return a;
}
//===== iterator interface to rows of the matrix
//! Iterator class for sequential access
typedef FieldIterator<FieldMatrix<K,n,m>,row_type> Iterator;
//! typedef for stl compliant access
typedef Iterator iterator;
//! rename the iterators for easier access
typedef Iterator RowIterator;
//! rename the iterators for easier access
typedef typename row_type::Iterator ColIterator;
//! begin iterator
Iterator begin ()
{
return Iterator(*this,0);
}
//! end iterator
Iterator end ()
{